SUMMARY REPORT
111 IRIS LANE (FORMERLY 1100 IRIS LANE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Mid-Atlantic
9324 Virginia Avenue
Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT
111 IRIS LANE (FORMERLY 1100 IRIS LANE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0
Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Mid- Atlantic
9324 Virginia Avenue
Norfolk, Virginia 23511-3095

and

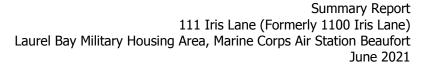
Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016


CTO WE52

JUNE 2021

Table of Contents

1.0	INTRODUC	TION 1
1.1 1.2		ND INFORMATION
2.0	SAMPLING	ACTIVITIES AND RESULTS
2.1 2.2 2.3 2.4	SOIL ANALY GROUNDWA	VAL AND SOIL SAMPLING
3.0	PROPERTY	STATUS
4.0	REFERENC	ES6
Table Table		Tables Laboratory Analytical Results - Soil Laboratory Analytical Results - Groundwater
		Appendices
Appen Appen Appen Appen	idix B idix C	Multi-Media Selection Process for LBMH UST Assessment Reports Laboratory Analytical Report - Groundwater Regulatory Correspondence

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

ft feet

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon QAPP Quality Assurance Program Plan

RBSL risk-based screening level

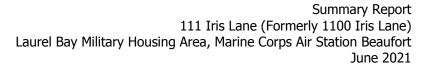
SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank
VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).


As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 111 Iris Lane (Formerly 1100 Iris Lane). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan* (QAPP) for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, 2016) and the Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.


The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 111 Iris Lane (Formerly 1100 Iris Lane). Details regarding the soil investigation at this site are provided in the SCDHEC UST Assessment Report – 1100 Iris Lane (MCAS Beaufort, 2008), SCDHEC UST Assessment Report – 1100 Iris Lane (MCAS Beaufort, 2011) and SCDHEC UST Assessment Report – 1100 Iris Lane (MCAS Beaufort, 2015). The UST Assessment Reports are provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the Investigation of Ground Water at Leaking Heating Oil UST Sites – November 2008 (PANDEY Environmental, 2008). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C.

2.1 UST Removal and Soil Sampling

Three 280 gallon heating oil USTs were removed from 111 Iris Lane (Formerly 1100 Iris Lane). Tank 1 was removed on July 19, 2007 from the front of the house. Tank 2 was removed on

March 23, 2011 in front of the concrete porch adjacent to the driveway. Tank 3 was removed on August 18, 2015 from a portion of the concrete porch. The former UST locations are indicated in the figures of the UST Assessment Reports (Appendix B). The USTs were removed, cleaned, and shipped offsite for recycling. There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of each UST removal. According to the UST Assessment Reports (Appendix B), the depths to the bases of the USTs were 5'6" (Tank 1), 5' (Tank 2) and 6' (Tank 3) bgs and a single soil sample was collected from each at that depth. An additional soil sample was collected from the side of the excavation for Tank 1 at a depth of 4' bgs. The samples were collected from the fill port side of the former USTs to represent a worst case scenario.

Following UST removal, soil samples were collected from the base of each excavation and the side of the excavation of Tank 1 and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. Copies of each laboratory analytical data report are included in the UST Assessment Reports presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from Tank 1 on July 19, 2007 at 111 Iris Lane (Formerly 1100 Iris Lane) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated August 13, 2008, SCDHEC requested an IGWA for 111 Iris Lane (Formerly 1100 Iris Lane) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix D. The soil results collected from Tank 2 and Tank 3 at 111 Iris Lane (Formerly 1100 Iris Lane) were less than the SCDHEC RBSLs, which indicated that the soil was not impacted by COPCs associated with the former USTs at concentrations that present a potential risk to human health and the environment.

2.3 Groundwater Sampling

On July 28, 2008, a temporary monitoring well was installed at 111 Iris Lane (Formerly 1100 Iris Lane), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST (Tank 1). The former UST location is indicated in the figure of the SCDHEC UST Assessment Report – 1100 Iris Lane (MCAS Beaufort, 2008). The UST Assessment Report is provided in Appendix B. Further details are provided in the Investigation of Ground Water at Leaking Heating Oil UST Sites – November 2008 (PANDEY Environmental, 2008).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Investigation of Ground Water at Leaking Heating Oil UST Sites – November 2008* (PANDEY Environmental, 2008).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 111 Iris Lane (Formerly 1100 Iris Lane) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Initially, based on the analytical results for groundwater, SCDHEC made the determination that NFA was required for 111 Iris Lane (Formerly 1100 Iris Lane). This NFA determination was obtained in a letter dated December 19, 2008. SCDHEC's NFA letter is provided in Appendix D.

After the discovery and subsequent soil sampling of the two additional tanks (Tank 2 and Tank 3) at 111 Iris Lane (Formerly 1100 Iris Lane), the soil results collected were less than the SCDHEC RBSLs, which indicated that the soil was not impacted by COPCs associated with the former USTs at concentrations that present a potential risk to human health and the environment. Therefore, NFA determination was obtained in a letter dated July 1, 2015 (Tank 2) and August 3, 2016 (Tank 3). SCDHEC's NFA letters are provided in Appendix D.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2008. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 1100 Iris Lane, Laurel Bay Military Housing Area, December 2008.
- Marine Corps Air Station Beaufort, 2011. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 1100 Iris Lane, Laurel Bay Military Housing Area, June 2011.
- Marine Corps Air Station Beaufort, 2015. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 1100 Iris Lane, Laurel Bay Military Housing Area, November 2015.
- PADEY Environmental, 2008. *Investigation of Ground Water at Leaking Heating Oil UST Sites for 1100 Iris A at Laurel Bay Military Housing Area, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, November 2008.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Tables

Table 1 Laboratory Analytical Results - Soil 111 Iris Lane (Formerly 1100 Iris Lane) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

		Samples C	d 08/08/15				
Constituent	SCDHEC RBSLs (1)	1100 Iris 1100 Iris Bottom 01 Side 02 07/19/07 07/19/07		1100 Iris 03/23/11	1100 Iris - 2 08/08/15		
Volatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)							
Benzene	0.003	ND	ND	ND	ND		
Ethylbenzene	1.15	ND	ND	ND	0.00219		
Naphthalene	0.036	0.000536	ND	ND	0.00653		
Toluene	0.627	0.000813	0.00122	ND	0.00712		
Xylenes, Total	13.01	ND	ND	ND	0.0106		
Semivolatile Organic Compounds Ana	lyzed by EPA Method 8270D (mg/kg)						
Benzo(a)anthracene	0.66	1.370	ND	ND	ND		
Benzo(b)fluoranthene	0.66	1.050	ND	ND	ND		
Benzo(k)fluoranthene	0.66	0.395	ND	ND	ND		
Chrysene	0.66	1.370	ND	ND	ND		
Dibenz(a,h)anthracene	0.66	0.0756	ND	ND	ND		

Notes:

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

Table 2 Laboratory Analytical Results - Groundwater 111 Iris Lane (Formerly 1100 Iris Lane) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Site-Specific Groundwater VISLs (μg/L) ⁽²⁾	Results Sample Collected 07/28/08
Volatile Organic Compounds Analyzed	d by EPA Method 8260B (μg/L)	
Benzene	5	16.24	ND
Ethylbenzene	700	45.95	ND
Naphthalene	25	29.33	ND
Toluene	1000	105,445	ND
Xylenes, Total	10,000	2,133	ND
Semivolatile Organic Compounds Ana	lyzed by EPA Method 82	70D (μg/L)	
Benzo(a)anthracene	10	NA	0.49
Benzo(b)fluoranthene	10	NA	0.78
Benzo(k)fluoranthene	10	NA	0.77
Chrysene	10	NA	0.49
Dibenz(a,h)anthracene	10	NA	0.69

Notes:

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

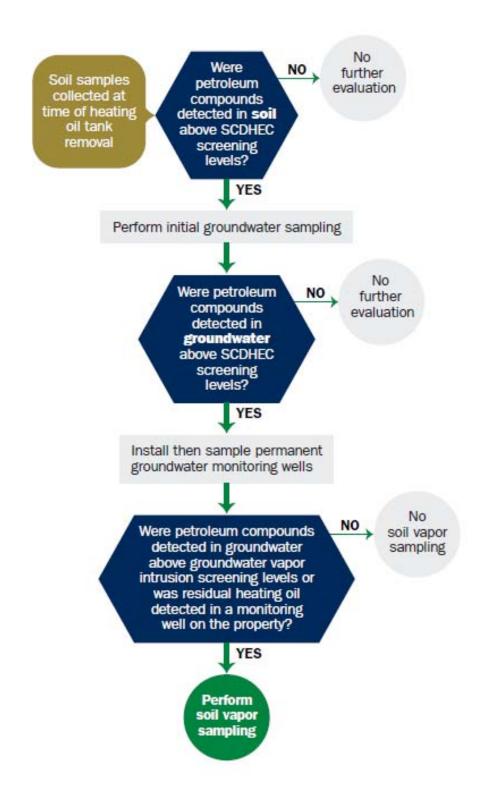
NA - Not Applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

μg/L - micrograms per liter


VISL - Vapor Intrusion Screening Level

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Reports

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC)

Underground Storage Tank (UST) Assessment Report

Submit Completed Form To:
UST Program
SCDHEC
2600 Bull Street
Columbia, South Carolina 29201
Telephone (803) 896-6240

I. OWNERSHIP OF UST (S)	
Beaufort Military Complex Family House Owner Name (Corporation, Individual, Public Agency, Other)	\n&
1510 LAUREL BAY BLVD.	
Mailing Address Beau Fort SC 299	06
City State Zip Cod	Kyle BROADFOOT
Area Code Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

N/A

Permit I.D. # Ac tus LEND Lease Construction

Facility Name or Company Site Identifier

VSRW XAADAN BAY BAY 100 RIS

Street Address or State Road (as applicable)

Beau fort, SC 29904

City

ZIP

County

Attachment 2 III. INSURANCE INFORMATION

Insurance Statement
The petroleum release reported to DHEC on V/A at Permit ID #may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.
Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)
If you answered YES to the above question, please complete the following information:
My policy provider is: The policy deductible is: The policy limit is:
If you have this type of insurance, please include a copy of the policy with this report.
And
I do/do not (circle one) wish to participate in the Superb Program.
IV. CERTIFICATION (To be signed by the UST owner/operator.)
I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.
Name (Type or print.)
Signature To be completed by Notary Public:
Sworn before me this day of, 20
(Name)
Notary Public for the state of

V. UST 1 ORMATION	Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	Tank
	#2		1000,000,000			
Product(ex. Gas, Kerosene)	DIESEL			<u> </u>		<u> </u>
Capacity(ex. 1k, 2k)	358g			,		
Age						
Construction Material(ex. Steel, FRP)	Steel					
Month/Year of Last Use				<u></u> -		
Depth (ft.) To Base of Tank	66"			,		
Spill Prevention Equipment Y/N	N					
Overfill Prevention Equipment Y/N	\mathcal{N}					
Method of Closure Removed Filled	Rejnoved	/				
Date Tanks Removed/Filled	7-10 67					
Visible Corrosion or Pitting Y/N	7-19-07					_
Visible Holes Y/N	N			· -		
	7					
Method of disposal for any USTs removed from the	e ground (a	attach dis	sposal ma	nifests)	•	
Recycling - Scrap Ste.	el					_
Method of disposal for any liquid petroleum, sludge disposal manifests) TREATMENT FACIL SocialFication					-	
	45			7 /		

VI. PIPING INFORMATION

		Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	Tank 6
	Construction Material(ex. Steel, FRP)	Steel					
	Distance from UST to Dispenser	NIA					
	Number of Dispensers	-0-					
	Type of System Pressure or Suction	Electric					
	Was Piping Removed from the Ground? Y/N	Pump			<u> </u>		
	Visible Corrosion or Pitting Y/N	4					
	Visible Holes Y/N	2					<u>.</u>
•	Age	2					
	Mild Connosion on	Vent	pip.	e +	fold	PP J	o pe
	VII. BRIEF SITE DESCRIPTION AN Home Heating Oil T			`es1D	ENTI	AZ	
				`esit	ENTI	AZ	
				°es15	ENTI	AZ	

VIII. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		۶	4
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.) 		¥	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		۴	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		*	
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		۶	

В.				(-			
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
						ECHEVARRY	
1	BOTTOM	5	SAND	66" 48"		XX. NAMINORY	ND
2	SIDE	3	SAND	ч8"	1050	A. MANPRY	ND
3							
4							
5							
6	·						
7 .							
8							
9							
10							
11			, .				
12							
13							
14							
15							
16							
17							
18							
19							
	<u> </u>			_			
20		1		ll l	<u> </u>	1	<u> </u>

* = Depth Below the Surrounding Land Surface

SAMPLING METHODOLOGY

X.

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

EPA Method 8260 B Volatile Organic Compounds - Presentative: Zea Sodium Bisulfate lea
- Preserdative: Zea Sodium BISUlfate lea
EPA METHON 8270 Poly Aromatic Hydra CARBONS
- No Preservative
ONE (1) SIDEWALF And ONE (1) Bottom
Sample were seemed from tank excavation
ONE (1) SiDEWALF And ONE (1) Bottom SAMPLE WERE SECURED FROM TANK EXCAVATION SAMPLES WERE STORED AND Shipped IN AN INSURATED COOLER W/ ICE.
insulated cooler w/ ICE.
*

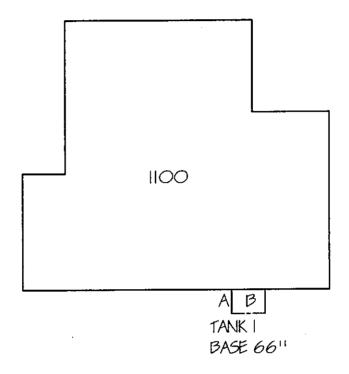
XI. RECEPTORS

		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		
	If yes, indicate type of receptor, distance, and direction on site map.		\ <u> </u>
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		·
	If yes, indicate type of well, distance, and direction on site map.	<u> </u>	
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination?	:	
i	If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		1
	If yes, indicate the area of contaminated soil on the site map.		

SUMMARY OF ANALYSIS RESULTS

NIA

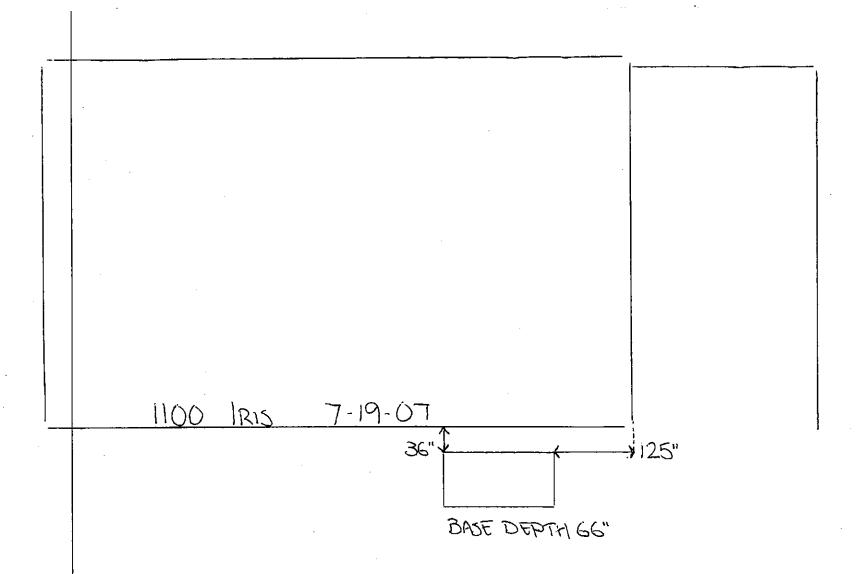
Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.


CoC	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8
Benzene								
Toluene					_			
Ethylbenzene	•							
Xylenes								
Naphthalene			<u> </u>					
Benzo(a)anthracene								
Benzo(b)flouranthene								
Benzo(k)flouranthene								
Chrysene								
Dibenz(a,h)anthracene								
TPH (EPA 3550)								

CoC	SB-9	SB-10	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16
Benzene								
Toluene								
Ethylbenzene				<u></u>				
Xylenes						ļ		
Naphthalene					·			
Benzo(a)anthracene								
Benzo(b)flouranthene								
Benzo(k)flouranthene								
Chrysene								
Dibenz(a,h)anthracene								
TPH (EPA 3550)								

Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5	·			
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000	•			
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo(a)anthracene	10		i		
Benzo(b)flouranthene	10	,			
Benzo(k)flouranthene	10				
Chrysene	10				
Dibenz(a,h)anthracen e	10				
EDB	.05				
1,2-DCA	.05				
Lead	Site specific				


IRIS LANE

TANK I EXCAVATION

A-SOIL TEST SIDE SAMPLE @ 48'' B-SOIL TEST BOTTOM SAMPLE @ 66''

CUSTOMER:	SCALE:	EPG INC.
BEAUFORT MILITARY COMPLEX FAMILY HOUSING	1/16"=1'-0" SUPPLIER:	P.O. BOX 1096
SITE ADDRESS:	EPG INC.	MOUNT PLEASANT, SC 29465-1096
1100 IRIS LANE	DATE: 9/22/2007	

ANAI	VTICAL	RESULTS
AINAI		

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

10+3 DUPDIA Test/America To assist us in using the proper analytical methods. is this work being conducted for regulatory purposes? Compliance Monitoring Client Name EPG ______ Client#: 2411 Project Name: LAUREL BAY Address: City/State/Zip Code: Project #: EP 2362 KIHN MAHUNEY Project Manager: Site/Location ID: Telephone Number: Fax Report To: Sampler Name: (Print Name) Invoice To: word "LA! Sempler Signature: Quote #: PO#: Matrix Preservation & # of Containers Analyze For: QC Deliverables Standard None Rush (surcharges may apply) X Level 2 (Batch QC) Date Needed: Level 3 Level 4 Fax Results: Other: SAMPLE ID REMARKS くっっかい しょうしゅつき Sine 02/7-16-0 1013 FONGLOVE BUSTOMOI 1717.0711300 276 Bizch Histrom Wi 10 11 Fangleve SIDE 62 Special instructions: LABORATORY COMMENTS: init Lab Temp: Rec Lab Temp: Remodished BF 4 h @vayeric-Custody Seals: Y Bottles Supplied by Test America: Received By:

Date:

Time:

Method of Shipment:

Relinquished By:

Date:

Time:

Received By:

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?

Compliance Monitoring

	Client Name	<u> 25</u>	<u> </u>							Clie	ent#	: 2	411												 .
	Address:															Projec	t Name		MIRE	Γ.	DAY				
	/State/Zip Code:																roject#							:	
P	roject Manager:	John	M	AHen	LE Y	1											ation ID						State:	:	
	phone Number:							F	эx:								port To								
Sampler Nan	ne: (Print Name)	Joseph	h A	Orr	<u>/</u>											Inv	oice To	:						· ·	
	mpier Signature:																Quote #:					PO#	:		
TAT-		, , , , , , , , , , , , , , , , , , ,	, ,	,		Matrix	Pres	ervati	on &	# of C	onta	lnen					Analy	ze For						:	·· ······
TAT Standard Rush (surcharg	jes may apply)			Composite		- Drinking Water or S - Soll/Solid or Specify Other								DIEL - WAPTH ALO					./			/ /	.	QC Deliver None X Level 2 (Batch Q Level 3	C)
Fax Results: Y	N .	Date Sampled	ime Sampled	11	Field Fiftered	SL - Sludge DW SW - Groundwate NW - Wastewate	- UNO		450,	fethanol	e e	Other (Specify)		TEN - MAR	W. 2.70								/	Level 4 Other:	
1007 Feagure	bottom al		<u> </u>	G	<u> </u>	ळ छ ड	 		<u> </u>	┼≛	1 2	ð			-1	 		/	{	 -	 		<u> </u>	REMARKS	
1007 Foxers				4	7			╅	+	+	2	녕	X	X K	-	┼	 		 	 	├─-	┼	ļ		
252 Beach				G	_	* ~ 		_	1-	1	7	1	$\frac{1}{x}$	×		╁╌	 	 -	 	ļ <u> </u>	<u> </u>	 -	 -	-	15
252 Beech	SIDE 02	_		Ċ				\top	1	1	1	7	×	X	-}	 	 		 			 	 	:	M
1100 Rus B		7-19-07	1050	3				\top		1	2	2	X	X			 		 			 		<u> </u>	
	DE 02	7.A.67	1050	<u>C</u>							2	2	*	*										· · · · · · · · · · · · · · · · · · ·	
MORIBIZIO	TOM OI	7-19-07	-	હ	_					1	2	7	*	74							·			- T	17
1108 1512 2	IDE 02	790			_			\perp		<u>i</u>	2	2	٨	15											- ix
1112 1215 1217	TOM OI	7200		ğ	4			_	\bot	1	2	2	×	12	<u> </u>	<u> </u>			<u> </u>		<u> </u>				15
1112 25 5; Special instructions	い。 ひき <u>の</u> と	7-2007	450	ايا	_1					<u> </u>	7	7	<u>></u>	义		<u> </u>]		1 455	21-0				<u> </u>	$\square_{\mathcal{H}}$
				1							•	Λ	1)) ir	nit Lab	Temp:		s: 7		
Realinguistness By:	RYDVI	(O-	Date:	沙		345	Regel	véd	b	14	1		4		Date:	14/27	Time:	945	4 3 5		Temp:	~ W	√∽ N/A ⊾merica;		
Relinquiched By	whi		Date Z4	107	ine.	->0	i Recei	ved I	Зу:	•	1		W	tto	Date:Z	1/25	Time:	:30	Bottle	s Supp サフ	lied by	Test A	merica:	Y . N:	1
Relinquished By:	<u> </u>		Date:]1	ime:]	Recei	ived	Ву:	-	<u> </u>	//			Date:	/	Time:		Metho	d of St	رے nipmen	7 L	160 (160 (2TH-U	lando

Test/America

0060504

page 30f3

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?

Date Needed: Date Needed: Date	ANAI	TICAL TESTING COR																	Comp	l eonaile	Monitor	ri ng	•				
Chylothete project #: Project #: P 23-52 Project #: P 23-52 Project #: P 23-52 State: Telephone Number: Sampler Name: Print Name: Sempler Signature: Sempler Signature: Matrix: Preservation 8 and Contained Analyze For: TAT Standard Result (survivalness may apply) Date Needed: Fax Results: Y N Sampler ID Sampl		Client Name	<u> </u>	<u>(2</u>							С	lient :	#: <u>/</u>	241	1							_			1		-
Chylothete project #: Project #: P 23-52 Project #: P 23-52 Project #: P 23-52 State: Telephone Number: Sampler Name: Print Name: Sempler Signature: Sempler Signature: Matrix: Preservation 8 and Contained Analyze For: TAT Standard Result (survivalness may apply) Date Needed: Fax Results: Y N Sampler ID Sampl		Address:				-		·									Projec	t Name:	إمل	AUR	ترك أ	BA	Ź		:		
Project Manager Telephone Number Sampler Name (Print Name) Sampler Signeture: Sempler Signeture: Sempler Signeture: Sempler Signeture: Matrix Preservation 8 of Container Analyze For: QC Deliverables None Report To: Guide #: POM: QC Deliverables None Report QC Deliverables Report QC Deli	City	/State/Zip Code:					·										P	roject#:	E	> 2:	<u>ვ</u> (::2)	_				
Telephone Number Sampler Name: (Print Name) Sampler Signeture:	†	roject Manager.	<u></u>	1 cm	161	1 <u>()</u> 'r	157									s								State:			-
Sampler Name: (Print Name) JiP CAREY NEXA Invoice To: Quote #: PO#: Matrix Preservation & # of Containers	Tele	phone Number:	- , -						_ F	anc_						Š								-	· · · · · · · · · · · · · · · · · · ·		
Sempler Signeture: Matrix Proservation & # of Containers Analyze For.	Sampler Nam	ne: (Print Name)	JiR	in E	C/ ₂	151	AFR	A								177											•
TAT Standard Rush (surcharges may apply) Date Needed: Fax Results: Y N Baselia I matructions: Special Instructions: Reinflushed by January Comments: Reinflushed by Janua	· s	mpler Signature:	1/4/	M.	W.	ŭ.	 									170 13											_
Special Instructions: Control 1/2 - 0 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 4 1/2 1/2 4 4 1/2					—	 	Matrix	Pre	8 0 (VE	tion 8	#o	Con	aine	re	,	-		Analy	ze For:				_				
Special Instructions: Control 1/2 - 0 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 4 1/2 1/2 4 4 1/2	Standard Rush (surcharg		- - - 	38	O I		DW - Drinking Water water S - Soil/Solid								LNA TER							7			None Level:	2 (2 <i>C)</i>	
Special Instructions: Control 1/2 - 0 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 1/2 2 4 4 4 1/2 1/2 4 4 1/2		N !	ate Sampl	ine Samp	= Grab, C	ield Filterex	L - Sludge W - Grounith W - Waster	Ю. УО.	ច	풀	*0s	oueuo au	ther (Specifi												Other:		
Special instructions: Control of the control of		Same Ol			16	"-	<u> </u>	╀┺	Ĭ.	-	+	5-4-6	4×				/	/			├─	 	/ 		REMARKS		21
Special Instructions: Catholished BE CACAAA I Company Comments: Init Lab Temp: Rectab Temp: Rectab Temp: And Taylo Time: 730 Received By: Additional Special Company Comments: Rectab Temp: Re								十		+	+	1 2	╧┿╧	_		-	 	 			 	 	-				20
Retirious hed by: Date 24 Time: 730 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Stime 4 Stime 5 Received By: Stime 4 Stime 6 S																-	1					 	1				
Retirious hed by: Date 24 Time: 730 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Stime 4 Stime 5 Received By: Stime 4 Stime 6 S				-																					1	············	
Retirious hed by: Date 24 Time: 730 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Stime 4 Stime 5 Received By: Stime 4 Stime 6 S				ļ	<u> </u>	Щ	<u> </u>	┡		\perp	4	1	1	_		_	ļ	ļ <u>.</u>							i		
Retirious hed by: Date 24 Time: 730 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Stime 4 Stime 5 Received By: Stime 4 Stime 6 S						-		╄-		_	+	+	-	┿	_		<u> </u>	ļ							:		
Retirious hed by: Date 24 Time: 730 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Stime 4 Stime 5 Received By: Stime 4 Stime 6 S			 	 	 			-	-	\dashv	-	+-	╬	-		-}	ļ	<u> </u>			ļ	ļ					
Retirious hed by: Date 24 Time: 730 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Stime 4 Stime 5 Received By: Stime 4 Stime 6 S				 	╁			-		+		╁	+	╁	-		 	<u> </u>		 -	 		<u></u>		<u> </u>		
Retirious hed by: Date 24 Time: 730 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Date 7 Stime 4 Stime 5 Received By: Stime 4 Stime 5 Received By: Stime 4 Stime 6 S					\vdash			╁┈	\vdash	+	╬	╁	╁	+-		-	 	 			 	<u> </u>			•		
Restriction of the Control of the Co	Special Instruction):			ــــــــــــــــــــــــــــــــــــــ		<u> </u>		i		_!_						L	<u> </u>		LABO	RATO	RY COL	MENT:	S:			
Retiriquished by: C12497 C Date: 730 Received by: Little Date: 735 Time: 45 Custody Seals: W N N/A Received by: Little Date: 735 Time: 45 Received by: 11000 Custody Seals: W N N/A Custody Seals: W N/A Custody S														4	\					1 1	100		()	9			
Received by: 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	Relinquishes by EC	hergri i	C-					Ř	.1 give	16	w	ef	I f	L.		Date: 2	4/07	TIME!	45					./ N//			
Relinquished By: Date: Time: Received By: Date: Time: Method of Shipment: FOIL X for TAL Vicility A	Relinguished by	afo		Date 2	4/0	7 Time	130	Rec	eive	By:		1	1	UX	tur) Date:	7/25	Time	30	Bottle	s Supp フス	olied by	Test A	merica:	YN		1
	Relinquished By:			Date:		Time):	Red	eive	d By:	{		_			Date:	<i>-</i>	Time:		Metho	od of Si	hipmen	:100	UX-	to TA-	<u> </u>	ud

Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order:

Project:

OQG0504

LAUREL BAY

Project Number: EP2362

Sampled: 07/16/07-07/20/07

Received: 07/25/07

LABORATORY REPORT

Sample ID: 252 BEECH SIDE 02 - Lab Number: OQG0504-14 - Matrix: Solid/Soil

CAS#	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
Polynuck	ear Aromatic Hydrocarbon	s by EPA Met	hod 827	<u>'0</u>							
33-32-9	Acenaphthene	79.9	U	ug/kg dry	7 9 .9	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
208-96-8	Acenaphthylene	105	U	ug/kg dry	105	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
120-12-7	Anthracene	57.5	U	ug/kg dry	57.5	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
56 - 55-3	Benzo (a) anthracene	19.5	U	ug/kg dry	19.5	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
205-99-2	Benzo (b) fluoranthene	19.0	U	ug/kg dry	19.0	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
207-08-9	Benzo (k) fluoranthene	19.0	U	ug/kg dry	19.0	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
91-24-2	Benzo (g,h,i) perylene	18.7	U	ug/kg dry	18.7	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
50-32-8	Вепло (а) ругеле	22.2	U	ug/kg dry	22.2	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
0-12-0	l-Methylnaphthalene	90.5	U	ug/kg dry	90.5	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
218-01-9	Chrysene	21.6	U	ug/kg dry	21.6	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
3-70-3	Dibenz (a,h) anthracene	23.7	U	ug/kg dry	23.7	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
206-44-0	Fluoranthene	25.9	U	ng/kg dry	25 9	180	į	07/31/07 03:04	REM	EPA 2270C	7G2701
6-73-7	Fluorene	70.6	U	ug/kg dry	70.6	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
93-39-5	Indeno (1,2,3-cd) pyrene	23.3	U	ug/kg dry	23.3	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
1-57-6	2-Methylnaphthalene	76.9	U	ug/kg dry	76.9	180	I	07/31/07 03:04	REM	EPA 8270C	7G2701
1-20-3	Naphthalene	72.4	U	ug/kg dry	72.4	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
5-01-8	Phenanthrene	42.5	U	ug/kg dry	42.5	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
29-00-0	Pyrene	36.6	U	ug/kg dry	36.6	180	1	07/31/07 03:04	REM	EPA 8270C	7G2701
urrogate: 2	l-Fluorobiphenyl (24-121%)	55 %									
urrogate: N	Vitrobenzene-d5 (19-111%)	54 %									
urrogate: T	Terphenyl-d14 (44-171%)	100 %									

LABORATORY REPORT

Sample ID: 1100 IRIS BOTTOM 01 - Lab Number: OQG0504-15 - Matrix: Solid/Soil

CAS#	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General	Chemistry Parameters										
٠ ٨١	% Solids	80.3		%.	0.100	0.100	1	07/26/07 17:40	RRP	EPA 160.3	7G26056
Volatile	Organic Compounds by EPA	Method 826	0B								
1-43-2	Benzene	0.317	U	ug/kg dry	0.317	0.865	1	08/02/07 18:33	JWT	EPA 8260B	7H03001
00-41-4	Ethylbenzene	0.366	บ	ug/kg dry	0.366	0.865	. 1	08/02/07 18:33	JWT	EPA 8260B	7H03001
1-20-3	Naphthalene	0.536	1	ug/kg dry	0.478	0.865	i	08/02/07 18:33	JWT	ÉPA 8260B	7H03001
08-88-3	Toluene	0.813	I	ug/kg dry	0.747	0.865	1	08/02/07 18:33	JWT	EPA 8260B	7H03001
330-20-7	Xylenes, total	0.449	U	ug/kg dry	0.449	0.865	1	08/02/07 18:33	JWT	EPA 8260B	7H03001
urrogate:	I,2-Dichloroethane-d4 (73-137%)	117%									
urrogate:	4-Bromofluorobenzene (59-118%)	104 %									
urrogate:	Dibromofluoromethane (55-145%)	107%									
urrogate:	Toluene-d8 (80-117%)	103 %									
'olynucl	ear Aromatic Hydrocarbons b	v EPA Met	hod 82 7	'o							
3-32-9	Acenaphthene	92.2	U	ug/kg dry	92.2	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
08-96-8	Acenaphthylene	122	υ	ug/kg dry	122	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
20-12-7	Anthracene	88.8	I	ug/kg dry	66.3	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
5 -55 -3	Benzo (a) anthracene	1370		ug/kg dry	22.5	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018

.

Client: EPG, INC.

Attn:

PO BOX 1096

JOHN MAHONEY

MT PLEASANT, SC 29465

Work Order:

Project:

OQG0504

LAUREL BAY

Project Number: EP2362

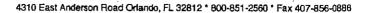
Sampled: 07/16/07-07/20/07

Received: 07/25/07

LABORATORY REPORT

Sample ID: 1100 IRIS BOTTOM 01 - Lab Number: OQG0504-15 - Matrix: Solid/Soil

CAS#	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
Polynucl	ear Aromatic Hydrocarbon	s by EPA Meth	10d 827	0 - Cont.							
205-99-2	Benzo (b) fluoranthene	1050		ug/kg dry	21.9	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
207-08-9	Benzo (k) fluoranthene	395		ug/kg dry	21.9	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
191-24-2	Benzo (g,h,i) perylene	179	1	ug/kg dry	21.6	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
50-32-8	Benzo (a) pyrene	562		ug/kg dry	25.6	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
90-12-0	1-Methylnaphthalene	104	ប	ug/kg dry	104	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
218-01-9	Chrysene	1370		ug/kg dry	24.9	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
53-70-3	Dibenz (a,h) anthracene	75.6	I	ug/kg dry	27.3	208	I	07/31/07 03:26	REM	EPA 8270C	7G27018
206-44-0	Fluoranthene	1920		ug/kg dry	29.9	208	I	07/31/07 03:26	REM	EPA 8270C	7G27018
36-73-7	Fluorene	81.4	ŭ	ug/kg dry	81.4	208	ī	07/31/07 03:26	REM	EPA 8270C	7G27018
193-39-5	Indeno (1,2,3-cd) pyrene	195	I	ug/kg dry	26.9	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
91-57-6	2-Methylnaphthalene	88.7	ប	ug/kg dry	88.7	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
21-20-3	Naphthalene	83.5	ប	ug/kg dry	83.5	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
85-01-8	Phenanthrene	263		ug/kg dry	49.1	208	. 1	07/31/07 03:26	REM	EPA 8270C	7G27018
129-00-0	Pyrene	1530		ug/kg dry	42.3	208	1	07/31/07 03:26	REM	EPA 8270C	7G27018
Surrogate: 1	2-Fluorobiphenyl (24-121%)	65 %									
Surrogate: 1	Nitrobenzene-d5 (19-111%)	63 %						•			
Surrogate:	Terphenyl-d14 (44-171%)	123 %									


LABORATORY REPORT

Sample ID: 1100 IRIS SIDE 02 - Lab Number: OQG0504-16 - Matrix: Solid/Soil

CAS#	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General	Chemistry Parameters										
٧A	% Solids	80.2		%.	0.100	0.100	1	07/26/07 17:40	RRP	EPA 160.3	7G26056
Volatile (Organic Compounds by EPA	Method 8260	0 B								
1-43-2	Benzene	0.228	ŭ	ug/kg dry	0.228	0.622	1	08/02/07 18:50	JWT	EPA 8260B	7H03001
00-41-4	Ethylbenzene	0.263	Ŭ	ug/kg dry	0.263	0.622	1	08/02/07 18:50	JWT	EPA 8260B	7H03001
11-20-3	Naphthalene	0.344	U	ug/kg dry	0.344	0.622	1	08/02/07 18:50	JWT	EPA 8260B	7H03001
08-88-3	Toluene	1.22		ug/kg dry	0.537	0.622	1	08/02/07 18:50	JWT	EPA 8260B	7H03001
330-20-7	Xylenes, total	0.323	ប	ug/kg dry	0.323	0.622	1	08/02/07 18:50	JWT	EPA 8260B	7H03001
urrogate:	1,2-Dichloroethane-d4 (73-137%)	120 %	NIVARE ES	· souther count	tere constant and	s was taken in					. was national for
urrogate: 4	4-Bromofluorobenzene (59-118%)	100 %									
'urrogate: l	Dibromofluoromethane (55-145%)	108 %		•							
urrogate: 1	Toluene-d8 (80-117%)	101 %									
Polynuck	ear Aromatic Hydrocarbons l	ov EPA Metl	hod 827	0							
3-32-9	Acenaphthene	92.3	ľ	ug/kg dry	92.3	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
08-96-8	Acenaphthylene	122	Ŭ	ug/kg dry	122	208	. 1	07/31/07 03:49	REM	EPA 8270C	7G27018
20-12-7	Anthracene	66.4	ŭ	ug/kg dry	66.4	208	ı	07/31/07 03:49	REM	EPA 8270C	7G27018
<u> </u>	Renzo (a) anthracene	22,5	U	ug/kg dry	22.5	208	1 -	-07/31/07 03:49	REM	EPA 8270C	7G27018
05-99-2	Benzo (b) fluoranthene	21.9	ប	ug/kg dry	21.9	208	1	07/31/07 03:49	REM	EPA 8270C	7G 27 018
07-08-9	Benzo (k) fluoranthene	21.9	υ	ug/kg dry	21.9	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
91-24-2	Benzo (g,h,i) perylene	21.6	บ	ug/kg dry	21.6	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
0-32-8	Вепго (а) ругепе	25.6	บ	ug/kg dry	25.6	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
	• • • •										

Enid Ortiz For Shali Brown

Project Manager

Client: EPG, INC.

Attn:

PO BOX 1096

MT PLEASANT, SC 29465 JOHN MAHONEY

Work Order:

Project:

Project Number:

OQG0504

EP2362

LAUREL BAY

Sampled: 07/16/07-07/20/07

Received: 07/25/07

LABORATORY REPORT

Sample ID: 1100 IRIS SIDE 02 - Lab Number: OQG0504-16 - Matrix: Solid/Soil

CAS#	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
Polynucl	ear Aromatic Hydrocarbon	s by EPA Metl	hod 827	'0 - Cont.							
90-12-0	I-Methylnaphthalene	105	U	ug/kg dry	105	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
218-01-9	Chrysene	24.9	U	ug/kg dry	24.9	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
53-70-3	Dibenz (a,h) anthracene	27.3	U	ug/kg dry	27.3	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
206-44-0	Fluoranthene	30.0	U	ug/kg dry	30.0	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
86-73-7	Fluorene	81.5	U	ug/kg dry	81.5	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
193-39-5	Indeno (1,2,3-cd) pyrene	27.0	U	ug/kg dry	27.0	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
91-57-6	2-Methylnaphthalene	88.g	U	ug/kg dry	88.8	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
91-20-3	Naphthalene	83.6	υ	ug/kg dry	83.6	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
85-01-8	Phenanthrene	49.1	ប	ug/kg dry	49.1	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
129-00-0	Pyrene	42.3	U	ug/kg dry	42.3	208	1	07/31/07 03:49	REM	EPA 8270C	7G27018
Surrogate: I	2-Fluorobiphenyl (24-121%)	66 %									
Surrogate: i	Nitrobenzene-d5 (19-111%)	62 %									
Surrogate: 1	Terphenyl-d14 (44-171%)	122 %									

LABORATORY REPORT

Sample ID: 1108 IRIS BOTTOM 01 - Lab Number: OQG0504-17 - Matrix: Solid/Soil

CAS#	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General (Chemistry Parameters	-		·							
NA	% Solids	93.2		%.	0.100	0.100	1	07/26/07 17:40	RRP	EPA 160.3	7G26056
	Organic Compounds by EPA 1	Method 826	0B								•
71-43-2	Benzene	0.123	U	ug/kg dry	0.123	0.337	1	08/02/07 19:07	JWT	EPA 8260B	7H03001
100-41-4	Ethylbenzene	0.155	1	ug/kg dry	0.142	0.337	1	08/02/07 19:07	JWT	EPA 8260B	7H03001
11-20-3	Naphthalene	0.5 19	J 4	ug/kg dry	0.186	0.337	1	08/02/07 19:07	JWT	EPA 8260B	7H03001
. 08-88-3	Toluene	0.5 79		ug/kg dry	0.291	0.337	1	08/02/07 19:07	JWT	EPA 8260B	7H03001
330-20-7	Xylenes, total	0.303	I	ug/kg dry	0.175	0.337	i	08/02/07 19:07	JWT	EPA 8260B	7H03001
urrogate: 1	,2-Dichloroethane-d4 (73-137%)	120 %									•
iurrogate: 4	-Bromofluorobenzene (59-118%)	96 %									
iurrogate: D	ibromofluoromethane (55-145%)	108 %									
urrogate: T	oluene-d8 (80-117%)	98 %									
	ar Aromatic Hydrocarbons b	y EPA Meth	10d 827	70	richtaphoraicheoire	4.55 (5.00) 10 kg		the currency			n later slutt bars after galler
3-32-9	Acenaphthene	79.4	υ.	ug/kg dry	79.4	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
08-96-8	Acenaphthylene	105	U	ug/kg dry	105	179	I	07/31/07 04:11	REM	EPA 8270C	7G27018
20-12-7	Anthracene	251		ug/kg dry	57.2	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
6-55-3	Benzo (a) anthracene	3470		ug/kg dry	19.4	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
05-99-2	Benzo (b) fluoranthene	2950		ug/kg dry	18.9	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
07-08-9	Benzo (k) fluorauthene	1090		ug/kg dry	18.9	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
91-24-2	Benzo (g,h,i) perylene	657		ug/kg dry	18.6	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
0-32-8	Benzo (a) pyrene	1760		ug/kg dry	22.1	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
0-12-0	1-Methylnaphthalene	90.0	U	ug/kg dry	90.0	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
18-01-9	Chrysene	423 0		ug/kg dry	21.4	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
3-70-3	Dibenz (a,h) anthracene	198		ug/kg dry	23.5	179	1	07/31/07 04:11	REM	EPA 8270C	7G27018
36-44-0	Fluoranthene	5500		ug/kg dry	25.8	. 179	1	07/31/07 04:11	REM	EPA 8270C	7G27018

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	anding Officer Attn: NF dividual, Public Agency, Other)	REAO (Craig Ehde)
P.O. Box 55001 Mailing Address	· · · · · · · · · · · · · · · · · · ·	
_Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843 Area Code	228-7317 Telephone Number	Craig Ehde Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #	
<u>Laurel Bay Military Housi</u>	ng Area, Marine Corps Air Station, Beaufort, SC
Facility Name or Company Site Identifi	ier
1100 Iris Lane, Laurel Ba	
Street Address or State Road (as application)	able)
	Beaufort
City	County
City	County

Attachment 2

III. INSURANCE INFORMATION

	Insurance	Statement	
qualify to receive state moni	es to pay for appropriate sit p fund, written confirmation	te rehabilitation as n of the existence	Permit ID Number may etivities. Before participation is or non-existence of an environmental
Is there now, or has t UST release? YES_	here ever been an insurance NO (check one	e policy or other f	inancial mechanism that covers this
If you answer	ed YES to the above questi	on, please comple	ete the following information:
	My policy provider is: The policy deductible is: The policy limit is:		
If you have this type	of insurance, please include	e a copy of the po	licy with this report.
V.	CERTIFICATION	(To be signed b	v the UST owner)
I certify that I have person attached documents; and information, I believe that	nally examined and am fa	miliar with the i	information submitted in this and aliduals responsible for obtaining this e, and complete.
Name (Type or print.)		-	
Signature		÷	
To be completed by N	lotary Public:		
Sworn before me this	day of	, 20	
(Name)		-	
Notary Public for the state of	f	South Careline	1.
Notary Public for the state of Please affix State seal if you	are commissioned outside l	South Carolina	1.

				(
VI. UST INFORMATION	1100Iris				
roduct(ex. Gas, Kerosene)	Heating oil				
Capacity(ex. 1k, 2k)	280 gal				
.ge	Late 1950s				
Construction Material(ex. Steel, FRP)	Steel				
Nonth/Year of Last Use	Mid 1980s				
Oepth (ft.) To Base of Tank	5 '				
pill Prevention Equipment Y/N	No				
Overfill Prevention Equipment Y/N	No				··· - ·
Method of Closure Removed/Filled	Removed			;	
Pate Tanks Removed/Filled	3/23/2011				
isible Corrosion or Pitting Y/N	Yes				
isible Holes Y/N	Yes				
UST 1100Iris was removed from the	ground and		,	at a	
1ethod of disposal for any liquid petroleum, sludges		emoved	from the	e USTs (a	ıttach
sposar mannests) <u>UST 1100Iris was previously</u> fille	ed with sand l	by ot	ners.		
	Overfill Prevention Equipment Y/N Method of Closure Removed/Filled Oute Tanks Removed/Filled Visible Corrosion or Pitting Y/N Visible Holes Y/N Method of disposal for any USTs removed from the UST 1100Iris was removed from the Subtitle "D" landfill. See Attack	Capacity(ex. 1k, 2k)	Capacity(ex. Ik, 2k)	Capacity(ex. Ik, 2k)	Capacity(ex. Ik, 2k)

VII. PIPING INFORMATION

	1100Iris
	Steel
Construction Material(ex. Steel, FRP)	& Copper
Distance from UST to Dispenser	N/A
Number of Dispensers	N/A
Type of System Pressure or Suction	Suction
Was Piping Removed from the Ground? Y/N	No
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	No
Age	Late 1950s
Corrosion and pitting were found pipe. The copper supply and ret	d on the surface of the steel ver
pipe. The copper supply and lea	Julii Times were sound.
VIII. BRIEF SITE DESCR	
The USTs at the residences are o	constructed of single wall steel
The USTs at the residences are of and formerly contained fuel oil	constructed of single wall steel for heating. These USTs were
The USTs at the residences are o	constructed of single wall steel for heating. These USTs were
The USTs at the residences are of and formerly contained fuel oil	constructed of single wall steel for heating. These USTs were
The USTs at the residences are of and formerly contained fuel oil	constructed of single wall steel for heating. These USTs were
The USTs at the residences are of and formerly contained fuel oil	constructed of single wall steel for heating. These USTs were

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		х	
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.) 		Х	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		х	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		х	
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		Х	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

В.

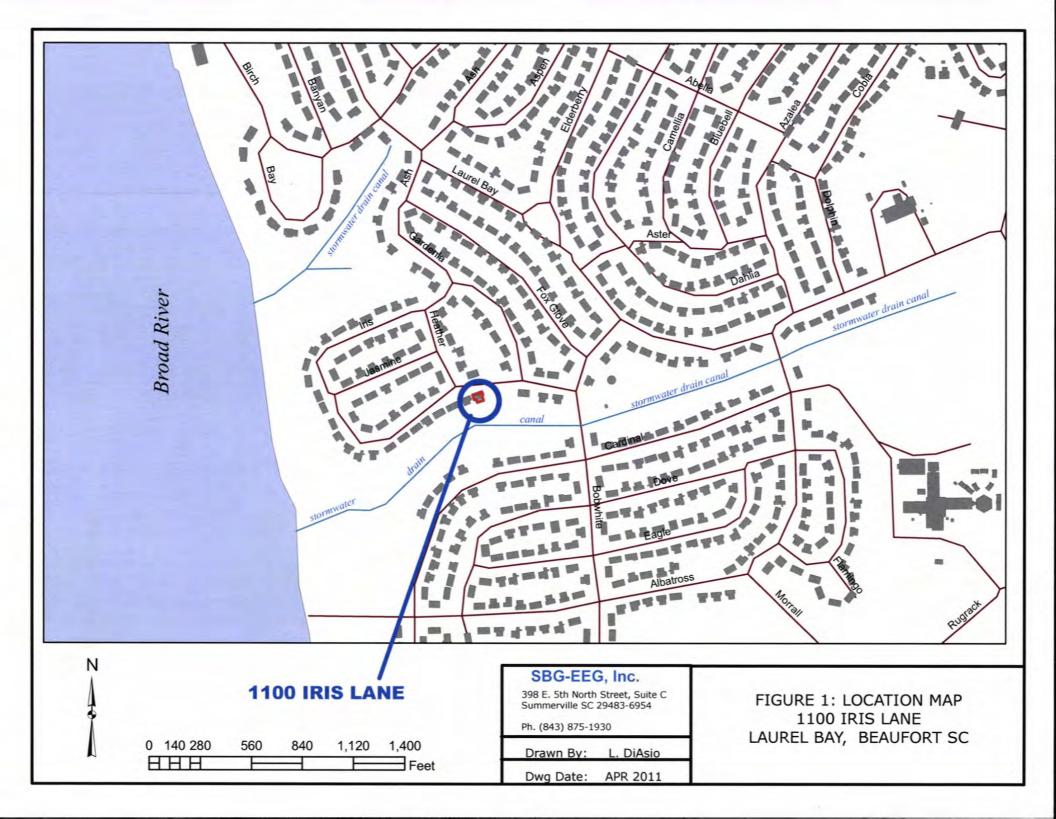
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
1100Iris	Excav at fill end	Soil	Sandy	5'	3/23/11 1515 hrs	P. Shaw	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19		,					
20							

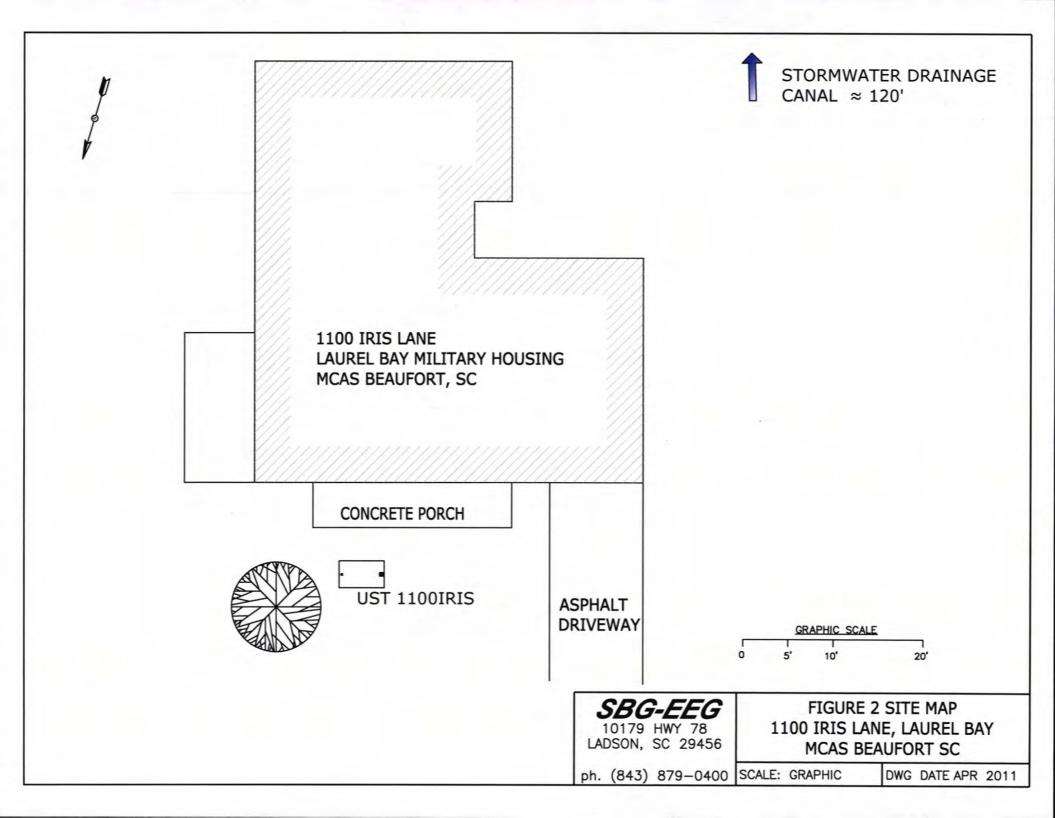
^{* =} Depth Below the Surrounding Land Surface

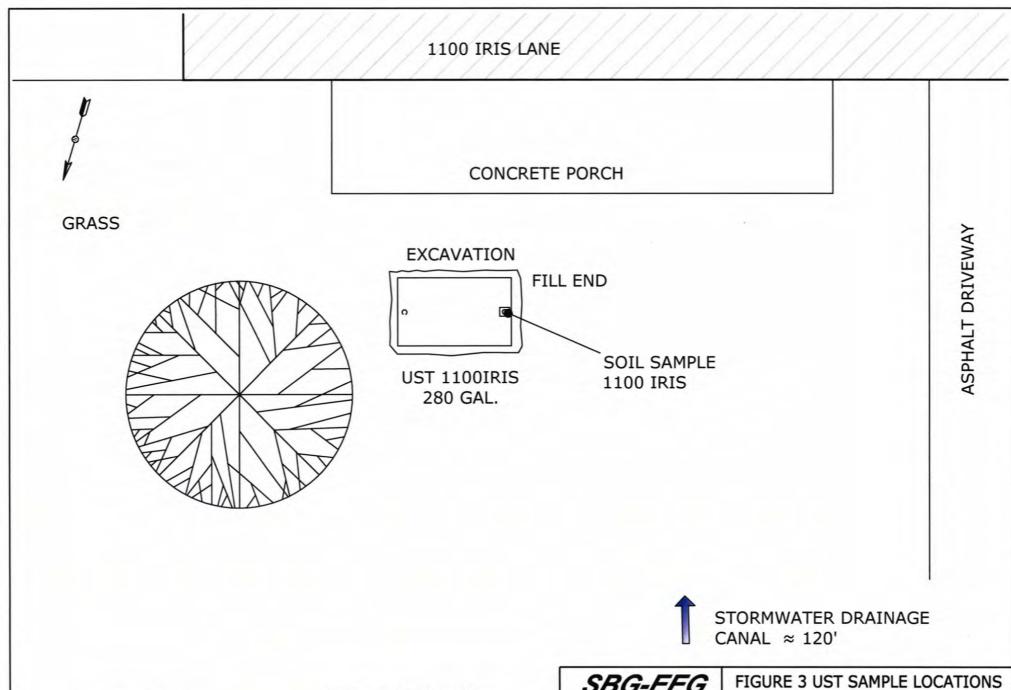
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system? *~120' to stormwater canal	*X	
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electricity, gas, water, sewer, sewer, water, electricity, gas, water, sewer, sewer, sewer, sewer, sewer, sewer, water, electricity, gas, water, sewer, s		ity,
	If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		Х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

UST 1100IRIS WAS 24" BELOW GRADE.

SBG-EEG 10179 HWY 78 LADSON, SC 29456

1100 IRIS LANE, LAUREL BAY MCAS BEAUFORT SC

ph. (843) 879-0400

SCALE: GRAPHIC

DWG DATE APR 2011

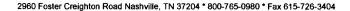
Picture 1: Location of UST 1100Iris.

Picture 2: UST 1100Iris tank location after completion of work.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

	11007	Ī					
C _o C UST	1100Iris						
Benzene	ND						
Toluene	ND						
Ethylbenzene	ND						
Xylenes	ND						
Naphthalene	ND						
Benzo (a) anthracene	ND		-				
Benzo (b) fluoranthene	ND						
Benzo (k) fluoranthene	ND						
Chrysene	ND						
Dibenz (a, h) anthracene	ND						
TPH (EPA 3550)							
CoC							
Benzene							
Toluene				<u>.</u>			
Ethylbenzene							
Xylenes					·		
Naphthalene							
Benzo (a) anthracene							
Benzo (b) fluoranthene							
Benzo (k) fluoranthene							
Chrysene							
Dibenz (a, h) anthracene						:	
TPH (EPA 3550)							


SUMMARY OF ANALYSIS RESULTS (cont'd)
Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

is present, indicate the measured		I	T	T .	
CoC	RBSL	W-1	W-2	W -3	W -4
	(µg/l)				
Free Product					
Thickness	None	İ			
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

April 11, 2011

1039 Iris 1100 Iris 1101 Iris

1105 Iris

10:57:29AM

Client:

EEG - Small Business Group, Inc. (2449)

10179 Highway 78

Ladson, SC 29456

Attn:

Tom McElwee

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project

03/24/11 11:15

03/24/11 16:00

Project Nbr: P/O Nbr:

none 1027

Date Received: 03/26/11

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
1010 Foxglove	NUC4497-01	03/21/11 14:15
1071 Heather	NUC4497-02	03/22/11 09:45
1068 Gardenia	NUC4497-03	03/22/11 15:00
1039 Iris	NUC4497-04	03/23/11 10:45
1100 Iris	NUC4497-05	03/23/11 15:15

NUC4497-06

NUC4497-07

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

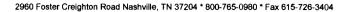
South Carolina Certification Number: 84009

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated.

Estimated uncertainty is available upon request.


This report has been electronically signed.

Lemos A Hage

Report Approved By:

Ken A. Hayes

Senior Project Manager

10179 Highway 78 Ladson, SC 29456

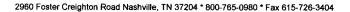
Tom McElwee

Attn

Work Order:

NUC4497

Project Name:


Received:

Laurel Bay Housing Project

[none] Project Number:

03/26/11 08:25

				TICILE REI						
A 1.0	D. 14	EN.	I Imito	MDL	MRL	Dilution	•	Madhad	A I4	D-4-b
Analyte	Result	Flag	Units	MDL		Factor	Date/Time	Method	Analyst	Baten
Sample ID: NUC4497-01 (1010 F	oxglove - Soil)	Sample	ed: 03/21/1	1 14:15						
General Chemistry Parameters										
% Dry Solids	94.0		%	0.500	0.500	1	04/06/11 12:29	SW-846	AMS	11D0901
Volatile Organic Compounds by EPA	A Method 8260B	1								
Benzene	ND		mg/kg dry	0.00127	0.00231	1	03/30/11 17:26	SW846 8260B	MJH/H	11C5756
Ethylbenzene	ND		mg/kg dry	0.00113	0.00231	1	03/30/11 17:26	SW846 8260B	MJH/H	11C5756
Naphthalene	ND		mg/kg dry	0.00197	0.00578	1	03/30/11 17:26	SW846 8260B	МЈН/Н	11C5756
Toluene	ND		mg/kg dry	0.00103	0.00231	1	03/30/11 17:26	SW846 8260B	MJH/H	11C5756
Xylenes, total	ND		mg/kg dry	0.00220	0.00578	1	03/30/11 17:26	SW846 8260B	МЈН/Н	11C5756
Surr: 1,2-Dichloroethane-d4 (67-138%)	110 %					1	03/30/11 17:26	SW846 8260B	MJH H	11C5756
Surr: Dibromofluoromethane (75-125%)	103 %					1	03-30 11 17:26	SW846 8260B	MJH/H	11C5756
Surr: Toluene-d8 (76-129%)	92 %					1	03/30/11 17:26	SW846 8260B	MJH H	11C5756
Surr: 4-Bromofluorobenzene (67-147%)	100 %					I	03/30/11 17:26	SW846 8260B	MJH/H	11C5756
Polyaromatic Hydrocarbons by EPA	8270D									
Acenaphthene	ND		mg/kg dry	0.0147	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Acenaphthylene	ND		mg/kg dry	0.0210	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Anthracene	ND		mg/kg dry	0.00944	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Benzo (a) anthracene	ND		mg/kg dry	0.0115	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Benzo (a) pyrene	ND		mg/kg dry	0.00839	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Benzo (b) fluoranthene	ND		mg/kg dry	0.0398	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Benzo (g,h,i) perylene	ND		mg/kg dry	0.00944	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Benzo (k) fluoranthene	ND		mg/kg dry	0.0388	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Chrysene	ND		mg/kg dry	0.0325	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0157	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Fluoranthene	ND		mg/kg dry	0.0115	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Fluorene	ND		mg/kg dry	0.0210	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0325	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Naphthalene	ND		mg/kg dry	0.0147	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Phenanthrene	ND		mg/kg dry	0.0105	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Pyrene	ND		mg/kg dry	0.0241	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
1-Methylnaphthalene	ND		mg/kg dry	0.0126	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
2-Methylnaphthalene	ND		mg/kg dry	0.0220	0.0702	1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Surr: Terphenyl-d14 (18-120%)	55 %					I	03 30 11 15:33	SW846 8270D	AJK	11C6845
Surr: 2-Fluorobiphenyl (14-120%)	48 %					1	03/30/11 15:33	SW846 8270D	AJK	11C6845
Surr: Nitrobenzene-d5 (17-120%)	47 %					1	03/30/11 15:33	SW846 8270D	AJK	11C6845

EEG - Small Business Group, Inc. (2449) Client

> 10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number:

[none]

03/26/11 08:25 Received:

						Dilution	Analysis			
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Analyst	Batch
Sample ID: NUC4497-02 (1071 H	eather - Soil)	Sample	d: 03/22/1	1 09:45						
General Chemistry Parameters										
% Dry Solids	84.0		%	0.500	0.500	1	04/06/11 12:29	SW-846	AMS	11D0901
Volatile Organic Compounds by EPA	Method 8260B									
Benzene	ND		mg/kg dry	0.00106	0.00193	1	03/30/11 17:56	SW846 8260B	MJH/H	11C5756
Ethylbenzene	ND		mg/kg dry	0.000947	0.00193	1	03/30/11 17:56	SW846 8260B	МЈН/Н	11C5756
Naphthalene	ND		mg/kg dry	0.00164	0.00483	1	03/30/11 17:56	SW846 8260B	МЈН/Н	11C5756
Toluene	ND		mg/kg dry	0.000860	0.00193	1	03/30/11 17:56	SW846 8260B	МЈН/Н	11C5756
Xylenes, total	ND		mg/kg dry	0.00184	0.00483	1	03/30/11 17:56	SW846 8260B	МЈН/Н	11C5756
Surr: 1,2-Dichloroethane-d4 (67-138%)	109 %					1	03/30/11 17:56	SW846 8260B	MJH∘H	11C5756
Surr: Dibromofluoromethane (75-125%)	100 %					1	03/30/11 17:56	SW846 8260B	мјн н	11C5756
Surr: Toluene-d8 (76-129%)	94 %					1	03/30/11 17:56	SW846 8260B	мјн н	11C5756
Surr: 4-Bromofluorobenzene (67-147%)	104 %					1	03/30/11 17:56	SW846 8260B	MJH:H	11C5756
Polyaromatic Hydrocarbons by EPA 8	3270D									
Acenaphthene	ND		mg/kg dry	0.0162	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Acenaphthylene	ND		mg/kg dry	0.0231	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Anthracene	ND		mg/kg dry	0.0104	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Benzo (a) anthracene	ND		mg/kg dry	0.0127	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Benzo (a) pyrene	ND		mg/kg dry	0.00926	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Benzo (b) fluoranthene	ND		mg/kg dry	0.0440	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0104	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Benzo (k) fluoranthene	ND		mg/kg dry	0.0428	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Chrysene	ND		mg/kg dry	0.0359	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0174	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Fluoranthene	ND		mg/kg dry	0.0127	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Fluorene	ND		mg/kg dry	0.0231	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0359	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Naphthalene	ND		mg/kg dry	0.0162	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Phenanthrene	ND		mg/kg dry	0.0116	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Pyrene	ND		mg/kg dry	0.0266	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
1-Methylnaphthalene	ND		mg/kg dry	0.0139	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
2-Methylnaphthalene	ND		mg/kg dry	0.0243	0.0775	1	03/30/11 15:52	SW846 8270D	AJK	11C6845
Surr: Terphenyl-d14 (18-120%)	53 %					1	03 30 11 15:52	SW846 8270D	AJK	11C6845
Surr: 2-Fluorobiphenyl (14-120%)	51 %					1	03 30 11 15:52	SW846 8270D	AJK	11C6845
Surr: Nitrobenzene-d5 (17-120%)	48%					1	03/30/11 15:52	SW846 8270D	AJK	11C6845

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number: [none]

Received:

03/26/11 08:25

						Dilution	Analysis			
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Analyst	Batch
Sample ID: NUC4497-03 (1068 G	ardenia - Soil) Sampl	ed: 03/22/	11 15:00						
General Chemistry Parameters										
% Dry Solids	83.2		%	0.500	0.500	1	04/06/11 12:29	SW-846	AMS	11D0901
Volatile Organic Compounds by EPA	Method 8260B	;								
Benzene	ND		mg/kg dry	0.00114	0.00208	1	03/30/11 18:25	SW846 8260B	MJH/H	11C5756
Ethylbenzene	ND		mg/kg dry	0.00102	0.00208	1	03/30/11 18:25	SW846 8260B	MJH/H	11C5756
Naphthalene	ND		mg/kg dry	0.00177	0.00520	1	03/30/11 18:25	SW846 8260B	MJH/H	11C5756
Toluene	ND		mg/kg dry	0.000926	0.00208	1	03/30/11 18:25	SW846 8260B	MJH/H	11C5756
Xylenes, total	ND		mg/kg dry	0.00198	0.00520	1	03/30/11 18:25	SW846 8260B	MJH/H	11C5756
Surr: 1,2-Dichloroethane-d4 (67-138%)	108 %					1	03:30 11 18:25	SW846 8260B	мЈН/Н	11C5756
Surr: Dibromofluoromethane (75-125%)	102 %					1	03 30 11 18:25	SW846 8260B	MJH/H	11C5756
Surr: Toluene-d8 (76-129%)	96 %					1	03-30 11 18:25	SW846 8260B	MJH:H	11C5756
Surr: 4-Bromofluorobenzene (67-147%)	111 %					1	03:30:11 18:25	SW846 8260B	MJH H	11C5756
Polyaromatic Hydrocarbons by EPA	8270D									
Acenaphthene	ND		mg/kg dry	0.0166	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Acenaphthylene	ND		mg/kg dry	0.0237	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Anthracene	ND		mg/kg dry	0.0107	0.0794	1	03/30/11 16:10	SW846 8270D	АЈК	11C6845
Benzo (a) anthracene	ND		mg/kg dry	0.0130	0.0794	1	03/30/11 16:10	SW846 8270D	АЈК	11C6845
Benzo (a) pyrene	ND		mg/kg dry	0.00948	0.0794	1	03/30/11 16:10	SW846 8270D	АЈК	11C6845
Benzo (b) fluoranthene	ND		mg/kg dry	0.0450	0.0794	1	03/30/11 16:10	SW846 8270D	АЈК	11C6845
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0107	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Benzo (k) fluoranthene	ND		mg/kg dry	0.0438	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Chrysene	ND		mg/kg dry	0.0367	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0178	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Fluoranthene	ND		mg/kg dry	0.0130	0.0794	1	03/30/11 16:10	SW846 8270D	АЈК	11C6845
Fluorene	ND		mg/kg dry	0.0237	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Indeno (I,2,3-cd) pyrene	ND		mg/kg dry	0.0367	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Naphthalene	ND		mg/kg dry	0.0166	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Phenanthrene	ND		mg/kg dry	0.0118	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Pyrene	ND		mg/kg dry	0.0273	0.0794	1	03/30/11 16:10	SW846 8270D	АJК	11C6845
1-Methylnaphthalene	ND		mg/kg dry	0.0142	0.0794	1	03/30/11 16:10	SW846 8270D	АJК	11C6845
2-Methylnaphthalene	ND		mg/kg dry	0.0249	0.0794	1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Surr: Terphenyl-d14 (18-120%)	57 %					1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Surr: 2-Fluorobiphenyl (14-120%)	59 %					1	03/30/11 16:10	SW846 8270D	AJK	11C6845
Surr: Nitrobenzene-d5 (17-120%)	49 %					1	03/30/11 16:10	SW846 8270D	AJK	11C6845

10179 Highway 78 Ladson, SC 29456

Tom McElwee

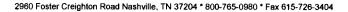
Attn

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project


Project Number: [

[none]

Received:

03/26/11 08:25

						Dilution	Analysis			
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Analyst	Batch
Sample ID: NUC4497-04 (1039 In General Chemistry Parameters	is - Soil) San	pled: 03	3/23/11 10:	45						
% Dry Solids	89.5		%	0.500	0.500	1	04/06/11 12:29	SW-846	AMS	11D0901
Volatile Organic Compounds by EPA	Method 82601	В								
Benzene	ND	_	mg/kg dry	0.00121	0.00220	1	03/31/11 13:36	SW846 8260B	МЛН/Н	11C7723
Ethylbenzene	ND	RL1	mg/kg dry	0.0662	0.135	50	03/31/11 14:06	SW846 8260B	МЛН/Н	11C7723
Naphthalene	ND	RL1	mg/kg dry	0.115	0.133	50	03/31/11 14:06	SW846 8260B	МЈН/Н	11C7723
Toluene	ND	RL1	mg/kg dry	0.0602	0.338	50	03/31/11 14:06	SW846 8260B	MJH/H	11C7723
Xylenes, total	ND	RL1	mg/kg dry	0.128	0.133	50	03/31/11 14:06	SW846 8260B	МЈН/Н	11C7723
Surr: 1,2-Dichloroethane-d4 (67-138%)	132 %	KL1	0 0 7	0.126	0.556					11C772.
Surr: 1,2-Dichloroethane-d4 (67-138%)	108 %					I 50	03/31/11 13:36 03/31/11 14:06	SW846 8260B SW846 8260B	MJH H	11C772.
Surr: Dibromofluoromethane (75-125%)	108 %					50 I	03/31/11 13:36	SW846 8260B	MJH H MJH H	11C772.
Surr: Dibromofluoromethane (75-125%)	93 %					50	03/31/11 14:06	SW846 8260B	MJH H	110772.
Surr: Toluene-d8 (76-129%)	114%					30 I	03 31 11 13:36	SW846 8260B	MJH/H	11C772.
Surr: Toluene-d8 (76-129%)	92 %					50	03:31:11 14:06	SW846 8260B	MJH/H	11C772.
Surr: 4-Bromofluorobenzene (67-147%)	163 %	ZX	7			1	03/31/11 13:36	SW846 8260B	МЈН/Н	11C772.
Surr: 4-Bromofluorobenzene (67-147%)	103 %					50	03/31/11 14:06	SW846 8260B	MJH≀H	11C772.
Polyaromatic Hydrocarbons by EPA 8	3270D									
Acenaphthene	ND		mg/kg dry	0.0155	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Acenaphthylene	ND		mg/kg dry	0.0222	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Anthracene	ND		mg/kg dry	0.00998	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Benzo (a) anthracene	ND		mg/kg dry	0.0122	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Benzo (a) pyrene	ND		mg/kg dry	0.00887	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Benzo (b) fluoranthene	ND		mg/kg dry	0.0421	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Benzo (g,h,i) perylene	ND		mg/kg dry	0.00998	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Benzo (k) fluoranthene	ND		mg/kg dry	0.0410	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Chrysene	ND		mg/kg dry	0.0344	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0166	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Fluoranthene	· ND		mg/kg dry	0.0122	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Fluorene	ND		mg/kg dry	0.0222	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0344	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Naphthalene	ND		mg/kg dry	0.0155	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Phenanthrene	ND		mg/kg dry	0.0111	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Pyrene	ND		mg/kg dry	0.0255	0.0743	1	03/30/11 16:29	SW846 8270D	AJK	11C6845
I-Methylnaphthalene	ND		mg/kg dry	0.0133	0.0743	1	03/30/11 16:29	SW846 8270D	АЈК	11C6845
2-Methylnaphthalene	ND		mg/kg dry	0.0233	0.0743	1	03/30/11 16:29	SW846 8270D	АЈК	11C6845
Surr: Terphenyl-d14 (18-120%)	76 %			-		1	03/30/11 16:29	SW846 8270D	AJK	11C6845
Surr: 2-Fluorobiphenyl (14-120%)	78 %					I I	03/30/11 16:29	SW846 8270D	AJK AJK	11C6842
Surr: Nitrobenzene-d5 (17-120%)	39 %					1	03/30/11 16:29	SW846 8270D	AJK	11C6845

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number: [none]

Received:

03/26/11 08:25

						Dilution	Analysis			
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Analyst	Batch
Sample ID: NUC4497-05 (1100 In General Chemistry Parameters	ris - Soil) Sam	pled: 03	3/23/11 15:	15						
% Dry Solids	82.4		%	0.500	0.500	1	04/06/11 12:29	SW-846	AMS	11D0901
Volatile Organic Compounds by EPA	Method 8260E	3			•					
Benzene	ND		mg/kg dry	0.00122	0.00222	1	03/30/11 19:25	SW846 8260B	MJH/H	11C5756
Ethylbenzene	ND		mg/kg dry	0.00109	0.00222	1	03/30/11 19:25	SW846 8260B	MJH/H	11C5756
Naphthalene	ND		mg/kg dry	0.00189	0.00555	1	03/30/11 19:25	SW846 8260B	мјн/н	11C5756
Toluene	ND		mg/kg dry	0.000987	0.00222	1	03/30/11 19:25	SW846 8260B	млн/н	11C5756
Xylenes, total	ND		mg/kg dry	0.00211	0,00555	1	03/30/11 19:25	SW846 8260B	МЈН/Н	11C5756
Surr: 1,2-Dichloroethane-d4 (67-138%)	107 %					1	03/30/11 19:25	SW846 8260B	MJH/H	11C5756
Surr: Dibromofluoromethane (75-125%)	100 %					1	03/30/11 19:25	SW846 8260B	мјн н	11C5756
Surr: Toluene-d8 (76-129%)	95 %					1	03/30/11 19:25	SW846 8260B	мјн н	11C5756
Surr: 4-Bromofluorobenzene (67-147%)	102 %					1	03/30/11 19:25	SW846 8260B	MJH H	11C5756
Polyaromatic Hydrocarbons by EPA	8270D									
Acenaphthene	ND		mg/kg dry	0.0168	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Acenaphthylene	ND		mg/kg dry	0.0241	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Anthracene	ND		mg/kg dry	0.0108	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Benzo (a) anthracene	ND		mg/kg dry	0.0132	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Benzo (a) pyrene	ND		mg/kg dry	0.00962	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Benzo (b) fluoranthene	ND		mg/kg dry	0.0457	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0108	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Benzo (k) fluoranthene	ND		mg/kg dry	0.0445	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Chrysene	ND		mg/kg dry	0.0373	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0180	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Fluoranthene	ND		mg/kg dry	0.0132	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Fluorene	ND		mg/kg dry	0.0241	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0373	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Naphthalene	ND		mg/kg dry	0.0168	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Phenanthrene	ND		mg/kg dry	0.0120	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Pyrene	ND		mg/kg dry	0.0277	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
I-Methylnaphthalene	ND		mg/kg dry	0.0144	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
2-Methylnaphthalene	ND		mg/kg dry	0.0253	0.0806	1	03/30/11 16:48	SW846 8270D	AJK	11C6845
Surr: Terphenyl-d14 (18-120%)	69 %					1	03 30 11 16:48	SW846 8270D	AJK	11C6845
Surr: 2-Fluorobiphenyl (14-120%)	57 %					1	03 30 11 16:48	SW846 8270D	AJK	11C6845
Surr: Nitrobenzene-d5 (17-120%)	54 %					1	03/30/11 16:48	SW846 8270D	AJK	11C6845

10179 Highway 78 Ladson, SC 29456

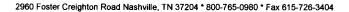
Tom McElwee

Attn

Work Order:

NUC4497

Project Name:


Laurel Bay Housing Project

Project Number: [none]

Received:

03/26/11 08:25

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Analyst	Batch
Sample ID: NUC4497-06 (1101)	Iris - Soil) Sam	pled: 0.	3/24/11 11:	15						
General Chemistry Parameters	,	-								
% Dry Solids	83.2		%	0.500	0.500	1	04/06/11 12:29	SW-846	AMS	11D0901
Volatile Organic Compounds by EP.	A Method 8260E	3								
Benzene	ND		mg/kg dry	0.00103	0.00188	1	03/30/11 19:55	SW846 8260B	МЈН/Н	11C5756
Ethylbenzene	0.0617		mg/kg dry	0.000921	0.00188	1	03/30/11 19:55	SW846 8260B	МЈН/Н	11C5756
Naphthalene	1.02		mg/kg dry	0.0793	0.233	50	03/31/11 16:05	SW846 8260B	MJH/H	11C7723
Toluene	0.00104	J	mg/kg dry	0.000837	0.00188	1	03/30/11 10:05	SW846 8260B	МЈН/Н	11C5756
Xylenes, total	0.270	•	mg/kg dry	0.00179	0.00188	1	03/30/11 19:55	SW846 8260B	МЈН/Н	11C5756
Surr: 1,2-Dichloroethane-d4 (67-138%)	109 %			0,00177	0.00470		03/30/11 19:55	SW846 8260B	MJH/H	11C5756
Surr: 1,2-Dichloroethane-d4 (67-138%)	99 %					1 50	03/31/11 16:05	SW846 8260B	MJH/H MJH/H	11C3730
Surr: Dibromofluoromethane (75-125%)	99 %					30 1	03/30/11 19:55	SW846 8260B	MJH H	11C5756
Surr: Dibromofluoromethane (75-125%)	87 %					50	03/31/11/16:05	SW846 8260B	MJH/H	11C7723
Surr: Toluene-d8 (76-129%)	116%					1	03 30 11 19:55	SW846 8260B	MJH/H	11C5756
Surr: Toluene-d8 (76-129%)	102 %					50	03/31/11 16:05	SW846 8260B	MJH/H	11C7723
Surr: 4-Bromofluorobenzene (67-147%)	178 %	Z	Y			1	03/30/11 19:55	SW846 8260B	мун н	11C5756
Surr: 4-Bromofluorobenzene (67-147%)	100 %					50	03:31:11 16:05	SW846 8260B	млн н	11C7723
Polyaromatic Hydrocarbons by EPA	. 8270D									
Acenaphthene	ND		mg/kg dry	0.0167	0.0798	1	03/30/11 17:06	SW846 8270D	АЈК	11C6845
Acenaphthylene	ND		mg/kg dry	0.0238	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Anthracene	ND		mg/kg dry	0.0107	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Benzo (a) anthracene	ND		mg/kg dry	0.0131	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Benzo (a) pyrene	ND		mg/kg dry	0.00953	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Benzo (b) fluoranthene	ND		mg/kg dry	0.0453	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0107	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Benzo (k) fluoranthene	ND		mg/kg dry	0.0441	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Chrysene	ND		mg/kg dry	0.0369	0.0798	1	03/30/11 17:06	SW846 8270D	АЈК	11C6845
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0179	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Fluoranthene	ND		mg/kg dry-	0.0131	0.0798	1	03/30/11 17:06	SW846 8270D	АЈК	11C6845
Fluorene	0.807		mg/kg dry	0.0238	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0369	0.0798	1	03/30/11 17:06	SW846 8270D	АЈК	11C6845
Naphthalene	1.01		mg/kg dry	0.0167	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
Phenanthrene	1.38		mg/kg dry	0.0119	0.0798		03/30/11 17:06	SW846 8270D	AJK	11C6845
Pyrene	0.0762	J	mg/kg dry	0.0274	0.0798	1	03/30/11 17:06	SW846 8270D	AJK	11C6845
1-Methylnaphthalene	3,89	-	mg/kg dry	0.0143	0.0798	1	03/30/11 17:06	SW846 8270D		11C6845
2-Methylnaphthalene	5.76		mg/kg dry	0.125	0.399	5	03/31/11 12:05	SW846 8270D	ajk	11C6845
Surr: Terphenyl-d14 (18-120%)	73 %			0.123	0,577		03/30/11/12:05	SW846 8270D	AJK	11C6845
Surr: 2-Fluorobiphenyl (14-120%)	64 %					1 1	03/30/11 17:06	SW846 8270D	AJK AJK	11C6845
Surr: Nitrobenzene-d5 (17-120%)	63 %						03/30/11 17:06	SW846 8270D	AJK AJK	11C6845
•						1	05/50/11 17.00	511 040 02/UD	лл	110043

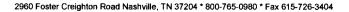
10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

NUC4497


Project Name:

Laurel Bay Housing Project

Project Number: Received: [none]

03/26/11 08:25

						Dilution	Analysis			
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Analyst	Batch
Sample ID: NUC4497-07 (1105 In	ris - Soil) San	npled: 03	3/24/11 16:	00						
General Chemistry Parameters										
% Dry Solids	85.0		%	0.500	0.500	1	04/06/11 12:29	SW-846	AMS	11D0901
Volatile Organic Compounds by EPA	Method 82601	В								
Benzene	ND	RL1	mg/kg dry	0.0594	0.108	50	03/31/11 15:06	SW846 8260B	MJH/H	11C7723
Ethylbenzene	ND	RL1	mg/kg dry	0.0529	0.108	50	03/31/11 15:06	SW846 8260B	МЈН/Н	11C7723
Naphthalene	ND	RL1	mg/kg dry	0.0918	0.270	50	03/31/11 15:06	SW846 8260B	МЈН/Н	11C7723
Toluene	ND	RL1	mg/kg dry	0.0481	0.108	50	03/31/11 15:06	SW846 8260B	МЈН/Н	11C7723
Xylenes, total	ND	RL1	mg/kg dry	0.103	0.270	50	03/31/11 15:06	SW846 8260B	МЈН/Н	11C7723
Surr: 1,2-Dichloroethane-d4 (67-138%)	106 %					50	03 31 11 15:06	SW846 8260B	MJH/H	11C7723
Surr: Dibromofluoromethane (75-125%)	91 %					50	03/31/11 15:06	SW846 8260B	MJH/H	11C7723
Surr: Toluene-d8 (76-129%)	102 %					50	03/31/11 15:06	SW846 8260B	мјн н	11C7723
Surr: 4-Bromofluorobenzene (67-147%)	104 %					50	03/31 11 15:06	SW846 8260B	MJH H	11C7723
Polyaromatic Hydrocarbons by EPA	8270D									
Acenaphthene	ND		mg/kg dry	0.0163	0.0779	1	03/30/11 17:25	SW846 8270D	АЈК	11C6845
Acenaphthylene	ND		mg/kg dry	0.0233	0.0779	1	03/30/11 17:25	SW846 8270D	АЈК	11C6845
Anthracene	ND		mg/kg dry	0.0105	0.0779	1	03/30/11 17:25	SW846 8270D	АЈК	11C6845
Benzo (a) anthracene	ND		mg/kg dry	0.0128	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Benzo (a) pyrene	ND		mg/kg dry	0.00931	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Benzo (b) fluoranthene	ND		mg/kg dry	0.0442	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0105	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Benzo (k) fluoranthene	ND		mg/kg dry	0.0430	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Chrysene	ND		mg/kg dry	0.0361	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0175	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Fluoranthene	ND		mg/kg dry	0.0128	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Fluorene	ND		mg/kg dry	0.0233	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0361	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Naphthalene	ND		mg/kg dry	0.0163	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Phenanthrene	ND		mg/kg dry	0.0116	0.0779	1	03/30/11 17:25	SW846 8270D	АЈК	11C6845
Pyrene	ND		mg/kg dry	0.0268	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
1-Methylnaphthalene	ND		mg/kg dry	0.0140	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
2-Methylnaphthalene	ND		mg/kg dry	0.0244	0.0779	1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Surr: Terphenyl-d14 (18-120%)	68 %					1	03 30 11 17:25	SW846 8270D	AJK	11C6845
Surr: 2-Fluorobiphenyl (14-120%)	52 %					1	03/30/11 17:25	SW846 8270D	AJK	11C6845
Surr: Nitrobenzene-d5 (17-120%)	44 %					I	03/30/11 17:25	SW846 8270D	AJK	11C6845

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

Received:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number: [no

[none]

03/26/11 08:25

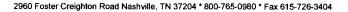
SAMPLE EXTRACTION DATA

			Wt/Vol				Extraction
Parameter	Batch	Lab Number	Extracted	Extract Vol	Date	Analyst	Method
Polyaromatic Hydrocarbons by EPA 82	270D						
SW846 8270D	11C6845	NUC4497-01	30.43	1.00	03/29/11 10:40	SAS	EPA 3550C
SW846 8270D	11C6845	NUC4497-02	30.86	1.00	03/29/11 10:40	SAS	EPA 3550C
SW846 8270D	11C6845	NUC4497-03	30.44	1.00	03/29/11 10:40	SAS	EPA 3550C
SW846 8270D	11C6845	NUC4497-04	30.21	1.00	03/29/11 10:40	SAS	EPA 3550C
SW846 8270D	11C6845	NUC4497-05	30.28	1.00	03/29/11 10:40	SAS	EPA 3550C
SW846 8270D	11C6845	NUC4497-06	30.26	1.00	03/29/11 10:40	SAS	EPA 3550C
SW846 8270D	11C6845	NUC4497-06RE1	30.26	1.00	03/29/11 10:40	SAS	EPA 3550C
SW846 8270D	11C6845	NUC4497-07	30.35	1.00	03/29/11 10:40	SAS	EPA 3550C
Volatile Organic Compounds by EPA M	Method 8260B						
SW846 8260B	11C5756	NUC4497-01	4.60	5.00	03/21/11 14:15	СНН	EPA 5035
SW846 8260B	11C5756	NUC4497-02	6.16	5.00	03/22/11 09:45	СНН	EPA 5035
SW846 8260B	11C5756	NUC4497-03	5.78	5.00	03/22/11 15:00	CHH	EPA 5035
SW846 8260B	11C5756	NUC4497-04	4.86	5.00	03/23/11 10:45	CHH	EPA 5035
SW846 8260B	11C7723	NUC4497-04RE1	5.08	5.00	03/23/11 10:45	СНН	EPA 5035
SW846 8260B	11C7723	NUC4497-04RE2	4.13	5.00	03/23/11 10:45	СНН	EPA 5035
SW846 8260B	11C5756	NUC4497-05	5.47	5.00	03/23/11 15:15	СНН	EPA 5035
SW846 8260B	11C5756	NUC4497-06	6.39	5.00	03/24/11 11:15	СНН	EPA 5035
SW846 8260B	11C7723	NUC4497-06RE1	6.44	5.00	03/24/11 11:15	СНН	EPA 5035
SW846 8260B	11C5756	NUC4497-07	5.26	5.00	03/24/11 16:00	СНН	EPA 5035
SW846 8260B	11C7723	NUC4497-07RE1	4.74	5.00	03/24/11 16:00	СНН	EPA 5035
SW846 8260B	11C7723	NUC4497-07RE2	5.45	5.00	03/24/11 16:00	СНН	EPA 5035

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn


Work Order:

NUC4497 Project Name: Laurel Bay Housing Project

Project Number: [none] 03/26/11 08:25 Received:

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B					
11C5756-BLK1						
Benzene	< 0.00110		mg/kg wet	11C5756	11C5756-BLK1	03/30/11 12:19
Ethylbenzene	<0.000980		mg/kg wet	11C5756	11C5756-BLK1	03/30/11 12:19
Naphthalene	< 0.00170		mg/kg wet	11C5756	11C5756-BLK1	03/30/11 12:19
Toluene	< 0.000890		mg/kg wet	11C5756	11C5756-BLK1	03/30/11 12:19
Xylenes, total	< 0.00190		mg/kg wet	11C5756	11C5756-BLK1	03/30/11 12:19
Surrogate: 1,2-Dichloroethane-d4	110%			11C5756	11C5756-BLK1	03/30/11 12:19
Surrogate: Dibromofluoromethane	102%			11C5756	11C5756-BLK1	03/30/11 12:19
Surrogate: Toluene-d8	91%			11C5756	11C5756-BLK1	03/30/11 12:19
Surrogate: 4-Bromofluorobenzene	98%			11C5756	11C5756-BLK1	03/30/11 12:19
11C5756-BLK2						
Benzene	< 0.0550		mg/kg wet	11C5756	11C5756-BLK2	03/30/11 12:49
Ethylbenzene	< 0.0490		mg/kg wet	11C5756	11C5756-BLK2	03/30/11 12:49
Naphthalene	< 0.0850		mg/kg wet	11C5756	11C5756-BLK2	03/30/11 12:49
Toluene	< 0.0445		mg/kg wet	11C5756	11C5756-BLK2	03/30/11 12:49
Xylenes, total	< 0.0950		mg/kg wet	11C5756	11C5756-BLK2	03/30/11 12:49
Surrogate: 1,2-Dichloroethane-d4	106%			11C5756	11C5756-BLK2	03/30/11 12:49
Surrogate: Dibromofluoromethane	100%			11C5756	11C5756-BLK2	03/30/11 12:49
Surrogate: Toluene-d8	101%			11C5756	11C5756-BLK2	03/30/11 12:49
Surrogate: 4-Bromofluorobenzene	98%			11C5756	11C5756-BLK2	03/30/11 12:49
11C7723-BLK1						
Benzene	< 0.00110		mg/kg wet	11C7723	11C7723-BLK1	03/31/11 12:07
Ethylbenzene	<0.000980		mg/kg wet	11C7723	11C7723-BLK1	03/31/11 12:07
Naphthalene	< 0.00170		mg/kg wet	11C7723	11C7723-BLK1	03/31/11 12:07
Toluene	< 0.000890		mg/kg wet	11C7723	11C7723-BLK1	03/31/11 12:07
Xylenes, total	< 0.00190		mg/kg wet	11C7723	11C7723-BLK1	03/31/11 12:07
Surrogate: 1,2-Dichloroethane-d4	110%			11C7723	11C7723-BLK1	03/31/11 12:07
Surrogate: Dibromofluoromethane	101%			11C7723	11C7723-BLK1	03/31/11 12:07
Surrogate: Toluene-d8	101%			11C7723	11C7723-BLK1	03/31/11 12:07
Surrogate: 4-Bromofluorobenzene	99%			11C7723	11C7723-BLK1	03/31/11 12:07
I1C7723-BLK2						
Benzene	< 0.0550		mg/kg wet	11C7723	11C7723-BLK2	03/31/11 12:37
Ethylbenzene	< 0.0490		mg/kg wet	11C7723	11C7723-BLK2	03/31/11 12:37
Naphthalene	< 0.0850		mg/kg wet	11C7723	11C7723-BLK2	03/31/11 12:37
Toluene	<0.0445		mg/kg wet	11C7723	11C7723-BLK2	03/31/11 12:37
Xylenes, total	< 0.0950		mg/kg wet	11C7723	11C7723-BLK2	03/31/11 12:37
Surrogate: 1,2-Dichloroethane-d4	104%			11C7723	11C7723-BLK2	03/31/11 12:37
Surrogate: Dibromofluoromethane	99%			11C7723	11C7723-BLK2	03/31/11 12:37
Surrogate: Toluene-d8	102%			11C7723	11C7723-BLK2	03/31/11 12:37
Surrogate: 4-Bromofluorobenzene	98%			11C7723	11C7723-BLK2	03/31/11 12:37

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

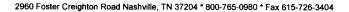
Work Order:

NUC4497

Project Name:

Received:

Laurel Bay Housing Project


Project Number: [no

[none]

03/26/11 08:25

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B					
Polyaromatic Hydrocarbons by	EPA 8270D					
11C6845-BLK1						
Acenaphthene	< 0.0140		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Acenaphthylene	< 0.0200		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Anthracene	<0.00900		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Benzo (a) anthracene	< 0.0110		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Benzo (a) pyrene	<0.00800		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Benzo (b) fluoranthene	< 0.0380		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Benzo (g,h,i) perylene	< 0.00900		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Benzo (k) fluoranthene	< 0.0370		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Chrysene	< 0.0310		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Dibenz (a,h) anthracene	< 0.0150		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Fluoranthene	< 0.0110		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Fluorene	< 0.0200		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Indeno (1,2,3-cd) pyrene	< 0.0310		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Naphthalene	< 0.0140		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Phenanthrene	< 0.0100		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Pyrene	< 0.0230		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
1-Methylnaphthalene	<0.0120		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
2-Methylnaphthalene	< 0.0210		mg/kg wet	11C6845	11C6845-BLK1	03/30/11 10:32
Surrogate: Terphenyl-d14	67%			11C6845	11C6845-BLK1	03/30/11 10:32
Surrogate: 2-Fluorobiphenyl	66%			11C6845	11C6845-BLK1	03/30/11 10:32
Surrogate: Nitrobenzene-d5	62%			11C6845	11C6845-BLK1	03/30/11 10:32

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number:

[none]

Received:

03/26/11 08:25

PROJECT QUALITY CONTROL DATA

Duplicate

Analyte	Orig. Val.	Duplicate	Q	Units	RPD	Limit	Batch	Sample Duplicated	% Rec.	Analyzed Date/Time
General Chemistry Parameters 11D0901-DUP1 % Dry Solids	83.0	85.7		%	3	20	11D0901	NUC4454-22		04/06/11 12:29

10179 Highway 78 Ladson, SC 29456

Tom McElwee

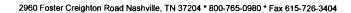
Attn

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project


Project Number: [none]

Received: 03/26/11 08:25

PROJECT QUALITY CONTROL DATA

LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by El	PA Method 8260B					***		
11C5756-BS1								
Benzene	50.0	53.0		ug/kg	106%	78 - 126	11C5756	03/30/11 10:49
Ethylbenzene	50,0	53.2		ug/kg	106%	79 - 130	11C5756	03/30/11 10:49
Naphthalene	50,0	53.4		ug/kg	107%	72 - 150	11C5756	03/30/11 10:49
Toluene	50.0	48.5		ug/kg	97%	76 - 126	11C5756	03/30/11 10:49
Xylenes, total	150	153		ug/kg	102%	80 - 130	11C5756	03/30/11 10:49
Surrogate: 1,2-Dichloroethane-d4	50.0	55.8			112%	67 - 138	11C5756	03/30/11 10:49
Surrogate: Dibromofluoromethane	50.0	51.4			103%	75 - 125	11C5756	03/30/11 10:49
Surrogate: Toluene-d8	50.0	45.8			92%	76 - 129	11C5756	03/30/11 10:49
Surrogate: 4-Bromofluorobenzene	50.0	50.0			100%	67 - 147	11C5756	03/30/11 10:49
11C7723-BS1								
Benzene	50.0	48.8		ug/kg	98%	78 - 126	11C7723	03/31/11 10:25
Ethylbenzene	50.0	49.5		ug/kg	99%	79 - 130	11C7723	03/31/11 10:25
Naphthalene	50.0	51.3		ug/kg	103%	72 - 150	11C7723	03/31/11 10:25
Toluene	50.0	49.0		ug/kg	98%	76 - 126	11C7723	03/31/11 10:2:
Xylenes, total	150	147		ug/kg	98%	80 - 130	11C7723	03/31/11 10:2:
Surrogate: 1,2-Dichloroethane-d4	50.0	56.5			113%	67 - 138	11C7723	03/31/11 10:25
Surrogate: Dibromofluoromethane	50.0	51.5			103%	75 - 125	11C7723	03/31/11 10:2:
Surrogate: Toluene-d8	50.0	49.5			99%	76 - 129	11C7723	03/31/11 10:25
Surrogate: 4-Bromofluorobenzene	50.0	50.4			101%	67 - 147	11C7723	03/31/11 10:25
Polyaromatic Hydrocarbons by EP	A 8270D							
11C6845-BS1								
Acenaphthene	1.67	1.19		mg/kg wet	72%	49 - 120	11C6845	03/30/11 10:51
Acenaphthylene	1.67	1.28		mg/kg wet	77%	52 - 120	11C6845	03/30/11 10:51
Anthracene	1.67	1.31		mg/kg wet	79%	58 - 120	11C6845	03/30/11 10:51
Benzo (a) anthracene	1.67	1.23		mg/kg wet	74%	57 - 120	11C6845	03/30/11 10:5
Benzo (a) pyrene	1.67	1.36		mg/kg wet	81%	55 - 120	11C6845	03/30/11 10:51
Benzo (b) fluoranthene	1.67	1.31		mg/kg wet	79%	51 - 123	11C6845	03/30/11 10:5
Benzo (g,h,i) perylene	1.67	1.43		mg/kg wet	86%	49 - 121	11C6845	03/30/11 10:51
Benzo (k) fluoranthene	1.67	1.24		mg/kg wet	74%	42 - 129	11C6845	03/30/11 10:5
Chrysene	1.67	1.18		mg/kg wet	71%	55 - 120	11C6845	03/30/11 10:5
Dibenz (a,h) anthracene	1.67	1.46		mg/kg wet	88%	50 - 123	11C6845	03/30/11 10:51
Fluoranthene	1.67	1.33		mg/kg wet	80%	58 - 120	11C6845	03/30/11 10:51
Fluorene	1.67	1.29		mg/kg wet	77%	54 - 120	11C6845	03/30/11 10:5
Indeno (1,2,3-cd) pyrene	1.67	1.50		mg/kg wet	90%	50 - 122	11C6845	03/30/11 10:5
Naphthalene	1.67	1.30		mg/kg wet	78%	28 - 120	11C6845	03/30/11 10:51
Phenanthrene	1.67	1.28		mg/kg wet	77%	56 - 120	11C6845	03/30/11 10:5
Pyrene	1.67	1.14		mg/kg wet	68%	56 - 120	11C6845	03/30/11 10:51
1-Methylnaphthalene	1.67	1.16		mg/kg wet	69%	36 - 120	11C6845	03/30/11 10:51
2-Methylnaphthalene	1.67	1.25		mg/kg wet	75%	36 - 120	11C6845	03/30/11 10:51

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

NUC4497

Project Name:

Received:

Laurel Bay Housing Project

Project Number:

[none]

03/26/11 08:25

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Polyaromatic Hydrocarbons by E	EPA 8270D							
11C6845-BS1								
Surrogate: Terphenyl-d14	1.67	1,01			61%	18 - 120	11C6845	03/30/11 10:51
Surrogate: 2-Fluorobiphenyl	1.67	1.11			67%	14 - 120	11C6845	03/30/11 10:51
Surrogate: Nitrobenzene-d5	1.67	1.13			68%	17 - 120	11C6845	03/30/11 10:51

EEG - Small Business Group, Inc. (2449) Client

> 10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number:

[none]

03/26/11 08:25 Received:

PROJECT QUALITY CONTROL DATA Matrix Spike

				viati ix Spin						
Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by l	EPA Method 826	0B					,			
11C5756-MS1										
Benzene	0.00806	0.0505		mg/kg wet	0.0470	90%	42 - 141	11C5756	NUC3836-05	03/30/11 20:54
Ethylbenzene	0.00176	0.0461		mg/kg wet	0.0470	94%	21 - 165	11C5756	NUC3836-05	03/30/11 20:54
Naphthalene	ND	0.0406		mg/kg wet	0.0470	86%	10 - 160	11C5756	NUC3836-05	03/30/11 20:54
Toluene	0.0169	0.0574		mg/kg wet	0.0470	86%	45 - 145	11C5756	NUC3836-05	03/30/11 20:54
Xylenes, total	0.0219	0.152		mg/kg wet	0.141	92%	31 - 159	11C5756	NUC3836-05	03/30/11 20:54
Surrogate: 1,2-Dichloroethane-d4		57.9		ug/kg	50.0	116%	67 - 138	11C5756	NUC3836-05	03/30/11 20:54
Surrogate: Dibromofluoromethane		51.0		ug/kg	50.0	102%	75 - 125	11C5756	NUC3836-05	03/30/11 20:54
Surrogate: Toluene-d8		47.7		ug/kg	50.0	95%	76 - 129	11C5756	NUC3836-05	03/30/11 20:54
Surrogate: 4-Bromofluorobenzene		52.8		ug/kg	50.0	106%	67 - 147	11C5756	NUC3836-05	03/30/11 20:54
11C7723-MS1										
Benzene	ND	3.28		mg/kg dry	3.00	109%	42 - 141	11C7723	NUC4497-06R E1	03/31/11 19:04
Ethylbenzene	0.125	3.68		mg/kg dry	3.00	118%	21 - 165	11C7723	NUC4497-06R E1	03/31/11 19:04
Naphthalene	1.02	4.16		mg/kg dry	3.00	105%	10 - 160	11C7723	NUC4497-06R E1	03/31/11 19:04
Toluene	ND	3.37		mg/kg dry	3.00	112%	45 - 145	11C7723	NUC4497-06R E1	03/31/11 19:04
Xylenes, total	0.658	11.3		mg/kg dry	9.01	118%	31 - 159	11C7723	NUC4497-06R E1	03/31/11 19:04
Surrogate: 1,2-Dichloroethane-d4		51.0		ug/kg	50.0	102%	67 - 138	11C7723	NUC4497-06R E1	03/31/11 19:04
Surrogate: Dibromofluoromethane		48,5		ug/kg	50.0	97%	75 - 125	11C7723	NUC4497-06R E1	03/31/11 19:04
Surrogate: Toluene-d8		50.6		ug/kg	50.0	101%	76 - 129	11C7723	NUC4497-06R E1	03/31/11 19:04
Surrogate: 4-Bromofluorobenzene		49.2		ug/kg	50.0	98%	67 - 147	11C7723	NUC4497-06R E1	03/31/11 19:04
Polyaromatic Hydrocarbons by E 11C6845-MS1	CPA 8270D									
Acenaphthene	ND	1.39		mg/kg dry	1.96	71%	42 - 120	11C6845	NUC4453-01	03/30/11 11:10
Acenaphthylene	ND	1.45		mg/kg dry	1.96	74%	32 - 120	11C6845	NUC4453-01	03/30/11 11:10
Anthracene	ND	1.55		mg/kg dry	1.96	79%	10 - 200	11C6845	NUC4453-01	03/30/11 11:10
Benzo (a) anthracene	ND	1.37		mg/kg dry	1.96	70%	41 - 120	11C6845	NUC4453-01	03/30/11 11:10
Benzo (a) pyrene	ND	1.46		mg/kg dry	1.96	75%	33 - 121	11C6845	NUC4453-01	03/30/11 11:10
Benzo (b) fluoranthene	ND	1.46		mg/kg dry	1.96	74%	26 - 137	11C6845	NUC4453-01	03/30/11 11:10
Benzo (g,h,i) perylene	ND	1.51		mg/kg dry	1.96	77%	21 - 124	11C6845	NUC4453-01	03/30/11 11:10
Benzo (k) fluoranthene	ND	1.38		mg/kg dry	1.96	70%	14 - 140	11C6845	NUC4453-01	03/30/11 11:10
Chrysene	ND	1.34		mg/kg dry	1.96	68%	28 - 123	11C6845	NUC4453-01	03/30/11 11:10
Dibenz (a,h) anthracene	ND	1.58		mg/kg dry	1.96	80%	25 - 127	11C6845	NUC4453-01	03/30/11 11:10

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number: [none]

Received:

03/26/11 08:25

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time		
Polyaromatic Hydrocarbons by	EPA 8270D			-								
11C6845-MS1												
Fluoranthene	ND	1.47		mg/kg dry	1.96	75%	38 - 120	11C6845	NUC4453-01	03/30/11 11:10		
Fluorene	ND	1.45		mg/kg dry	1.96	74%	41 - 120	11C6845	NUC4453-01	03/30/11 11:10		
Indeno (1,2,3-cd) pyrene	ND	1.59		mg/kg dry	1.96	81%	25 - 123	11C6845	NUC4453-01	03/30/11 11:10		
Naphthalene	ND	1.48		mg/kg dry	1.96	75%	25 - 120	11C6845	NUC4453-01	03/30/11 11:10		
Phenanthrene	ND	1.49		mg/kg dry	1.96	76%	37 - 120	11C6845	NUC4453-01	03/30/11 11:10		
Pyrene	ND	1.27		mg/kg dry	1.96	65%	29 - 125	11C6845	NUC4453-01	03/30/11 11:10		
1-Methylnaphthalene	ND	1.26		mg/kg dry	1.96	64%	19 - 120	11C6845	NUC4453-01	03/30/11 11:10		
2-Methylnaphthalene	ND	1.38		mg/kg dry	1.96	70%	11 - 120	11C6845	NUC4453-01	03/30/11 11:10		
Surrogate: Terphenyl-d14		1.02		mg/kg dry	1.96	52%	18 - 120	11C6845	NUC4453-01	03/30/11 11:10		
Surrogate: 2-Fluorobiphenyl		1.23		mg/kg dry	1.96	63%	14 - 120	11C6845	NUC4453-01	03/30/11 11:10		
Surrogate: Nitrobenzene-d5		1.30		mg/kg dry	1.96	66%	17 - 120	11C6845	NUC4453-01	03/30/11 11:10		

10179 Highway 78 Ladson, SC 29456

Tom McElwee

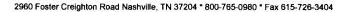
Attn

10179 Highway 78

Work Order: Project Name: NUC4497

Project Name:

Laurel Bay Housing Project


Project Number: [1

[none]

Received: 03/26/11 08:25

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 8	3260B										
11C5756-MSD1												
Benzene	0.00806	0.0506		mg/kg wet	0.0473	90%	42 - 141	0.2	50	11C5756	NUC3836-05	03/30/11 21:24
Ethylbenzene	0.00176	0.0464		mg/kg wet	0.0473	94%	21 - 165	0.7	50	11C5756	NUC3836-05	03/30/11 21:24
Naphthalene	ND	0.0342		mg/kg wet	0.0473	72%	10 - 160	17	50	11C5756	NUC3836-05	03/30/11 21:24
Toluene	0.0169	0.0620		mg/kg wet	0.0473	95%	45 - 145	8	50	11C5756	NUC3836-05	03/30/11 21:24
Xylenes, total	0.0219	0.156		mg/kg wet	0.142	94%	31 - 159	2	50	11C5756	NUC3836-05	03/30/11 21:24
Surrogate: 1,2-Dichloroethane-d4		56.2		ug/kg	50.0	112%	67 - 138			11C5756	NUC3836-05	03/30/11 21:24
Surrogate: Dibromofluoromethane		51.4		ug/kg	50.0	103%	75 - 125			11C5756	NUC3836-05	03/30/11 21:24
Surrogate: Toluene-d8		51.9		ug/kg	50.0	104%	76 - 129			11C5756	NUC3836-05	03/30/11 21:24
Surrogate: 4-Bromofluorobenzene		52.6		ug/kg	50.0	105%	67 - 147			11C5756	NUC3836-05	03/30/11 21:24
11C7723-MSD1												
Benzene	ND	3.28		mg/kg dry	3.00	109%	42 - 141	0.05	50	11C7723	NUC4497-06R E1	03/31/11 19:34
Ethylbenzene	0.125	3.71		mg/kg dry	3.00	119%	21 - 165	0.9	50	11C7723	NUC4497-06R E1	03/31/11 19:34
Naphthalene	1.02	4.47		mg/kg dry	3.00	115%	10 - 160	7	50	11C7723	NUC4497-06R E1	03/31/11 19:34
Toluene	ND	3.42		mg/kg dry	3.00	114%	45 - 145	2	50	11C7723	NUC4497-06R E1	03/31/11 19:34
Xylenes, total	0.658	11.4		mg/kg dry	9.01	119%	31 - 159	1	50	11C7723	NUC4497-06R E1	03/31/11 19:34
Surrogate: 1,2-Dichloroethane-d4		51.9		ug/kg	50.0	104%	67 - 138			11C7723	NUC4497-06R E1	03/31/11 19:34
Surrogate: Dibromofluoromethane		48.0		ug/kg	50.0	96%	75 - 125			11C7723	NUC4497-06R E1	03/31/11 19:34
Surrogate: Toluene-d8		50.6		ug/kg	50.0	101%	76 - 129			11C7723	NUC4497-06R E1	03/31/11 19:34
Surrogate: 4-Bromofluorobenzene		48.3		ug/kg	50,0	97%	67 - 147			11C7723	NUC4497-06R E1	03/31/11 19:34
Polyaromatic Hydrocarbons by E	PA 8270D											
11C6845-MSD1												
Acenaphthene	ND	1.34		mg/kg dry	1.96	68%	42 - 120	3	40	11C6845	NUC4453-01	03/30/11 11:28
Acenaphthylene	ND	1.43		mg/kg dry	1.96	73%	32 - 120	2	30	11C6845	NUC4453-01	03/30/11 11:28
Anthracene	ND	1.54		mg/kg dry	1.96	78%	10 - 200	1	50	11C6845	NUC4453-01	03/30/11 11:28
Benzo (a) anthracene	ND	1.33		mg/kg dry	1.96	68%	41 - 120	2	30	11C6845	NUC4453-01	03/30/11 11:28
Benzo (a) pyrene	ND	1.43		mg/kg dry	1.96	73%	33 - 121	2	33	11C6845	NUC4453-01	03/30/11 11:28
Benzo (b) fluoranthene	ND	1.39		mg/kg dry	1.96	71%	26 - 137	5	42	11C6845	NUC4453-01	03/30/11 11:28
Benzo (g,h,i) perylene	ND	1.35		mg/kg dry	1.96	69%	21 - 124	11	32	11C6845	NUC4453-01	03/30/11 11:28
Benzo (k) fluoranthene	ND	1.33		mg/kg dry	1.96	68%	14 - 140	4	39	11C6845	NUC4453-01	03/30/11 11:28
Chrysene	ND	1.28		mg/kg dry	1.96	66%	28 - 123	4	34	11C6845	NUC4453-01	03/30/11 11:28
Dibenz (a,h) anthracene	ND	1.38		mg/kg dry	1.96	70%	25 - 127	14	31	11C6845	NUC4453-01	03/30/11 11:28
Fluoranthene	ND	1.53		mg/kg dry	1.96	78%	38 - 120	4	35	11C6845	NUC4453-01	03/30/11 11:28
Fluorene	ND	1.37		mg/kg dry	1.96	70%	41 - 120	6	37	11C6845	NUC4453-01	03/30/11 11:28
Tidorene								-				

10179 Highway 78

Ladson, SC 29456

Tom McElwee

Attn

Work Order:

Received:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number:

[none]

03/26/11 08:25

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup - Cont.

A al	O ::- V-1	Developed	0	TTula	Spike Conc	% Rec.	Target	רומם	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Analyte	Orig. Val.	Duplicate	Q	Units	Conc	70 NEC.	Range	KFD	Lillit	Dateii	Duplicated	Date/Time
Polyaromatic Hydrocarbons by F	EPA 8270D											
11C6845-MSD1												
Naphthalene	ND	1.42		mg/kg dry	1.96	72%	25 - 120	4	42	11C6845	NUC4453-01	03/30/11 11:28
Phenanthrene	ND	1.42		mg/kg dry	1.96	72%	37 - 120	5	32	11C6845	NUC4453-01	03/30/11 11:28
Pyrene	ND	1.25		mg/kg dry	1.96	64%	29 - 125	2	40	11C6845	NUC4453-01	03/30/11 11:28
1-Methylnaphthalene	ND	1.25		mg/kg dry	1.96	64%	19 - 120	1	45	11C6845	NUC4453-01	03/30/11 11:28
2-Methylnaphthalene	ND	1.36		mg/kg dry	1.96	69%	11 - 120	1	50	11C6845	NUC4453-01	03/30/11 11:28
Surrogate: Terphenyl-d14		0.994		mg/kg dry	1.96	51%	18 - 120			11C6845	NUC4453-01	03/30/11 11:28
Surrogate: 2-Fluorobiphenyl		1.21		mg/kg dry	1.96	62%	14 - 120			11C6845	NUC4453-01	03/30/11 11:28
Surrogate: Nitrobenzene-d5		1.23		mg/kg dry	1.96	63%	17 - 120			11C6845	NUC4453-01	03/30/11 11:28

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client EEG - Small Business Group, Inc. (2449)

10179 Highway 78 Ladson, SC 29456

Attn Tom McElwee

Work Order:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number:

[none]

Received:

03/26/11 08:25

CERTIFICATION SUMMARY

TestAmerica Nashville

Method	Matrix	АІНА	Nelac	South Carolina	
SW846 8260B	Soil	N/A	X	X	
SW846 8270D	Soil		X	X	
SW-846	Soil				

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client EEG - Small Business Group, Inc. (2449)

10179 Highway 78 Ladson, SC 29456

Tom McElwee

Attn

Work Order:

Received:

NUC4497

Project Name:

Laurel Bay Housing Project

Project Number:

[none]

03/26/11 08:25

DATA QUALIFIERS AND DEFINITIONS

J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).

Concentrations within this range are estimated.

RL1 Reporting limit raised due to sample matrix effects.

ZX Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

ND Not detected at the reporting limit (or method detection limit if shown)

METHOD MODIFICATION NOTES

TestAmeric Client Name/Account #: EEG #	2960 Fo Nashvi	lle Divisio ester Crei lle, TN 372	ghton			1	Toll F	ree: 8	315-7: 300-7: 315-7:	65-09	980						met	hods, is		ork beir :s?	proper a	ucted f	for						٠
Address: 10179																				Compl	iance M	Ionitori	ng?	Yes	·	_ No	·	_	
City/State/Zip: Ladson																				Enfo	rcemen	t Actior	1?	Yes	·	_ No		_	
													_		Site	State	: <u>sc</u>												
Project Manager: Tom M		ewee@eeg	inc.net				7	/51		. 7	_			_ ,		PO#	:		0:	7	·								
Telephone Number: 843.41:		01		_	Fax N	lo.: _	3	ري		_	7-	0	40	2/	TA Q	uote #	:												
Sampler Name: (Print)	KATY	Sha	$-\omega$												Pro	ject ID:	Lau	el Bay	Housin	y Proje	ct								
Sampler Signature:	OPLY														Pn	oject #	·												
		7 - 7			Г		Prese	vative		10		М	atrix						-	nalyze	For:					7			
·		Shipped				dista	143174	(Label)	<u> </u>	their					- 8260											RUSH TAT (Pre-Schedule)			
	3 3	8 8				- 19		1	9	Σ					چ ا	١ _			1		1			1		1 8	1.		report
	Time Sampled	Containers	ءِ ا	, B	loe	HNO, (Red Label)	NaOH (Orange Lat	H,SO, Plastic (Yello		Other (Specify)	, L	툍		4	BTEX + Napth	- 8270D				1						٤	¥		Ę
	, in	1		Field Filtered		8	Š	5		S.	a a	3		9	# +	8			.	1						Ĭ₹	P	불	QC ≰≹
Sample ID / Description	. E	g	Grab	į	8	\$ 9	ğ	H,SO, Plan	None (Black La)the	Groundwate: Wastewoler	Drinking Wate	Sludge	Soil		PA		1		1						표	Standard TAT	Fax Results	Send
1010 FOX9/OUR 3/2	1/11 1415	15-1-	XI	+-	1				12			+-		N	1-	 "	-			-	-}	-	1	[—	ــــ	1₹	क्ष	<u> #</u>	ගී
1071 HRATHER 3/2:			/ -	+	H			+	12		+	+	++	- -	+>	X	├		+-			NO	८५५५	 	├─	╄	 	 	ļ
1068 GARDEN: A 3/2				+	+	+		+	2	-	+-	╁		ă .	+	X	-		-	 		 	┿	02	 	↓	<u> </u>	L_:	<u>`</u>
1039 IR's 3/2			X	+		- 1		+	Z	1	+	╀		X	+ ~	X	 	 	-	-	↓	ــــ	 	OS	<u> </u>	↓	<u> </u>	↓ '	<u> </u>
1100 Inis 3/23	11/1/15		-	+-	H	5		+	2		+	╁	1	X	12	У	-	-		—	<u> </u>	 	↓	64	<u> </u>	↓_	ļ!	 _'	_
1101 IRIS 3/20		-			H	0	} - 	+		4	-	╀	· · · · · · · //	X _	17	X	<u> </u>	-	↓	-		<u> </u>	 	05	ـــــ			$oxed{oxed}$	_
1105 IRIS 3/2	4/11 1600		`	+	H	10		+	2		+-	╀		XI_	1×	X	<u> </u>	┷	<u> </u>		<u> </u>	ļ	↓	Ul	<u> </u>	<u> </u>	<u> </u>	igsqcup	_
1103 112	4/11/400	13-11	+	+	\vdash	- 0	+-+	+	14	4	+	↓_	\sqcup	X_	1X	X	Ļ		ļ		_	<u> </u>	<u> </u>	07		L		$oxed{L}$	
			=	+	Ħ	==	┿	+	+-	-		-		+	 				↓	<u> </u>	<u> </u>	<u> </u>				1_			
		+	_	+	$\vdash \downarrow$	+	+	+	+	_	4	_	-	\perp	1	ļ	<u> </u>				<u> </u>	-	┷					$oxed{oxed}$	
Special Instructions:	<u> </u>	JŁ			Щ					\perp L		_				<u> </u>		ᆚ		<u> </u>	<u> </u>	<u> </u>				上			
					Meth	od of	Ship	nent:					,	FEDE	= Y		Labo	Temp		Upon	Receip		'c				_		
Relinquished by 3/5	Oate //	7ime 090	Rec	eived b		1						Di	ate	T	Time	•		VOC:	o Lis€	UI TERC	ispace:	•				Y		N	
Relinquished by:	Date	Time	Rec	eived b	y Tes		ca:				+	Di	ate	╅	Time	,													
			1	w	ur	~	2C				3	26			087														

ATTACHMENT A

NON-HAZARDOUS MANIFEST

	NON-HAZARDOUS MANIFEST	1. Generator's US EPA	A ID No.	Manifest Doc	No.	2. Page 1	of			
	3. Generator's Mailing Address: MCAS, BEAUFORT LAUREL BAY HOUSING BEAUFORT, SC 29907		erator's Site Address	(If different than n	nailing):		est Number MNA B. State 0	00316 Generator's		
	4. Generator's Phone 843-2. 5. Transporter 1 Company Name EEG, INC.	28-6461	6. US EPA	A ID Number			ransporter's II	NAME OF TAXABLE PARTY.	73.044	70-36
	7. Transporter 2 Company Name		8. US EPA	A ID Number		E. State T	ransporter's II		379-041	1
	9. Designated Facility Name and Site HICKORY HILL LANDFILL 2621 LOW COUNTRY ROAD RIDGELAND, SC 29936	Address	10. US EI	PA ID Number		G. State F		843-9	87-464	3
G	11. Description of Waste Materials				ontainers	13. Total	14. Unit	i M	isc. Commer	nts
ENER	a. HEATING OIL TANKS FILLED WM Profi			No.	704	8.90 To	Wt./Vol.		There are the contract of the	
ATO	b. WM Profile #									
R	c. WM Profile #								Tank	
	d.			,					orneal (called	
	WM Profile # J. Additional Descriptions for Mater	ials Listed Above		K. Dispos	sal Location			Level		11/1
	15. Special Handling Instructions and UST's from 2 1) 1100 TRIS 3	1) IIDI To	s/4) 137 s/5) 136	Grid 7 Doo	E linal.		30 Da	UE		
	Purchase Order # 16. GENERATOR'S CERTIFICATE: I hereby certify that the above-describ	oed materials are not ha	EMERGENCY (CONTACT / PH	ONE NO.:	any applicable		ve been ful	ly and	
T	Printed Name Charles H. He 17. Transporter 1 Acknowledgement	rrm	Signature "On be		Her	plicable regu	lations.	Month 5	Day //	Year //
RANSPO	Printed Name Som FS Balo 18. Transporter 2 Acknowledgement	Lwin	Signature	s Bal	ldue			Month 5	Day	Year
R T E R	Printed Name		Signature				4	Month	Day	Year
FACIL	19. Certificate of Final Treatment/Displayment of the above listed applicable laws, regulations, permits a	treatment facility, that and licenses on the date	s listed above.				as managed in	compliance	e with all	17.4
TY	20. Facility Owner or Operator: Certif	ecd	Signature	oni (o Lee	ed		Month 5	Day 12	Year
	White-TREATMENT, STORAGE, DISPO	SAL FACILITY COPY	Blue- GENERATO	OR #2 COPY		Yel	low- GENERA'	TOR #1 COP	Y	

Gold-TRANSPORTER #1 COPY

Pink- FACILITY USE ONLY

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

Owner Name (Corporation	ommanding Officer Attn: No on, Individual, Public Agency, Other)	KEAO (CIAIG EIIGE)
P.O. Box 55001 Mailing Address		
Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Military Facility Name or Company Site 1100 Iris Lane, Lau	rel Bay Milita		Station,	Beaufort, S	3C
Street Address or State Road (a	is applicable)				
Beaufort,	Beaufort				
City	County				

Attachment 2

III. INSURANCE INFORMATION

	Insurance	e Statement	
qualify to receive state monie	es to pay for appropriate site fund, written confirmation	at Permit ID Number may ite rehabilitation activities. Before participation is on of the existence or non-existence of an environment apleted.	tal
UST release? YES_	NO (check one)	te policy or other financial mechanism that covers this e) ion, please complete the following information:	
	My policy provider is: The policy deductible is: The policy limit is:		
If you have this type of	of insurance, please include	le a copy of the policy with this report.	
	IV. REQUEST FO	FOR SUPERB FUNDING	
I DO/DONOT w	ish to participate in the SUI	JPERB Program. (Circle one.)	
V.	CERTIFICATION ((To be signed by the UST owner)	
I certify that I have personattached documents; and the information, I believe that the	ally examined and am far	amiliar with the information submitted in this and cy of those individuals responsible for obtaining n is true, accurate, and complete.	l all this
Name (Type or print.)			
Signature		-	
To be completed by No	otary Public:		
Sworn before me this	day of	, 20	
(Name)			
Notary Public for the state of Please affix State seal if you a	are commissioned outside S	South Carolina	

VI. UST INFORMATION	
	1100Iris-2
Product(ex. Gas, Kerosene)	Heating oil
Capacity(ex. 1k, 2k)	280 gal
Age	Late 1950s
Construction Material(ex. Steel, FRP)	Steel
Month/Year of Last Use	Mid 1980s
Depth (ft.) To Base of Tank	6 '
Spill Prevention Equipment Y/N	No
Overfill Prevention Equipment Y/N	No
Method of Closure Removed/Filled	Removed
Date Tanks Removed/Filled	8/18/2015
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	Yes
Method of disposal for any USTs removed from	n the ground (attach disposal manifests) om the ground, cleaned and recycled.
Attachment "A."	on one ground, ordered and root order

VII. PIPING INFORMATION

Visible Corrosion or Pitting Y/N			1100Iris-2	
Construction Material(ex. Steel, FRP)			Steel	
Distance from UST to Dispenser		Construction Material(ex. Steel, FRP)		
Type of System Pressure or Suction			N/A	
Type of System Pressure or Suction		Number of Dispensers	N/A	
Visible Corrosion or Pitting Y/N		Type of System Pressure or Suction	Suction	
Visible Corrosion of Pitting Y/N		Was Piping Removed from the Ground? Y/N	No	
AgeLate 1950s If any corrosion, pitting, or holes were observed, describe the location and extent for each pipe. Corrosion and pitting were found on the surface of the steel		Visible Corrosion or Pitting Y/N	Yes	
If any corrosion, pitting, or holes were observed, describe the location and extent for each piper corrosion and pitting were found on the surface of the steel		Visible Holes Y/N	No	
If any corrosion, pitting, or holes were observed, describe the location and extent for each piper corrosion and pitting were found on the surface of the steel		Age	Late 1950s	
	T	fany corrosion nitting or holes were observed	describe the leastion and are	tant fan anal min
		Corrosion and pitting were four pipe. The copper supply and restricted by the copper supply and restri	nd on the surface of eturn lines were sou	the steel and. RY gle wall ste
installed in the late 1950s and last used in the mid 1980s.		Corrosion and pitting were four pipe. The copper supply and residences are and formerly contained fuel oil	RIPTION AND HISTO constructed of sing for heating. These	RY gle wall ste

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		Х	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?If yes, indicate location on site map and describe the odor (strong, mild, etc.)		Х	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		Х	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		Х	
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		Х	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

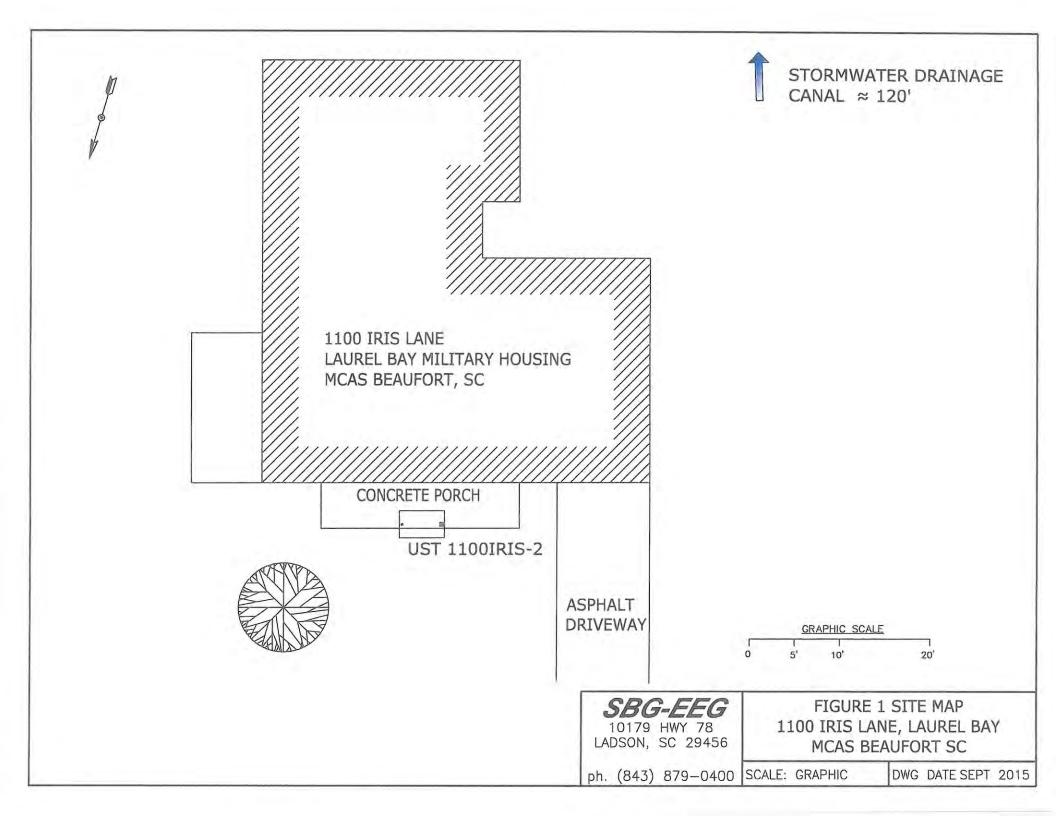
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
1100 Iris-2	Excav at fill end	Soil	Sandy	61	8/18/15 1200 hrs	P. Shaw	
							, i
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

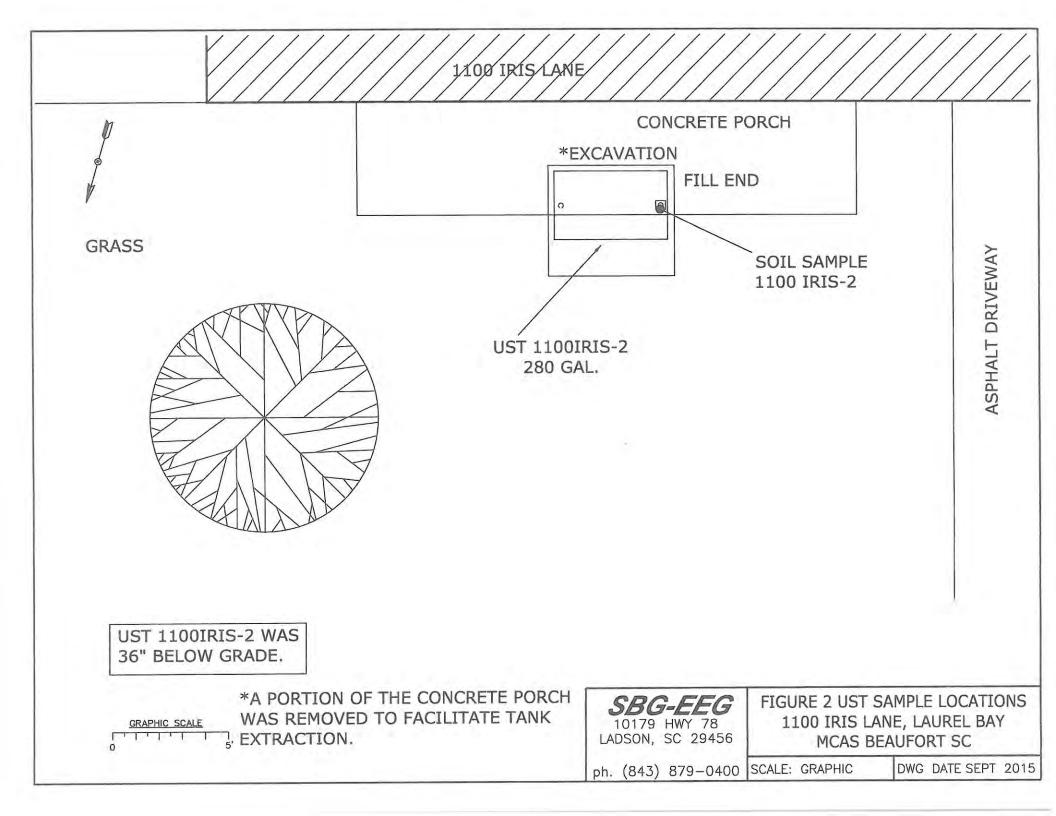
^{* =} Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.
·


XII. RECEPTORS


Yes No *X Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system? *~120' to stormwater canal If yes, indicate type of receptor, distance, and direction on site map. B. Are there any public, private, or irrigation water supply wells within X 1000 feet of the UST system? If yes, indicate type of well, distance, and direction on site map. C. Are there any underground structures (e.g., basements) X Located within 100 feet of the UST system? If yes, indicate type of structure, distance, and direction on site map. D. Are there any underground utilities (e.g., telephone, electricity, gas, *X water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the *Sewer, water, electricity, contamination? cable & fiber optic If yes, indicate the type of utility, distance, and direction on the site map. E. Has contaminated soil been identified at a depth less than 3 feet X below land surface in an area that is not capped by asphalt or concrete? If yes, indicate the area of contaminated soil on the site map.

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 1100Iris-2.

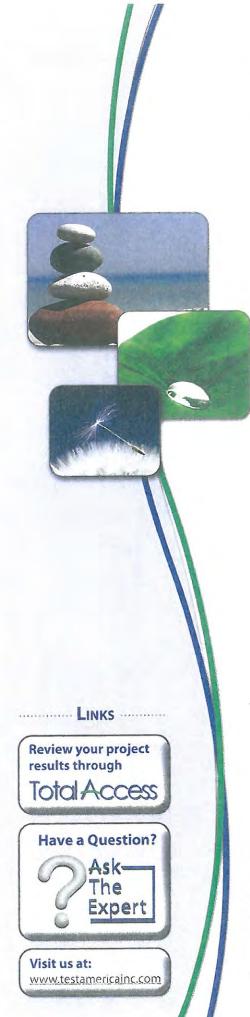
Picture 2: Tank excavation.

Picture 3: Site after completion of tank removal.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	1100Iris-2	
Benzene	ND	
Toluene	0.00712 mg/kg	
Ethylbenzene	0.00219 mg/kg	
Xylenes	0.0106 mg/kg	
Naphthalene	0.00653 mg/kg	
Benzo (a) anthracene	ND	
Benzo (b) fluoranthene	ND	
Benzo (k) fluoranthene	ND	
Chrysene	ND	
Dibenz (a, h) anthracene	ND	
TPH (EPA 3550)		
CoC		
Benzene		
Toluene		
Ethylbenzene		
Xylenes		
Naphthalene		
Benzo (a) anthracene		
Benzo (b) fluoranthene		
Benzo (k) fluoranthene		
Chrysene		
Dibenz (a, h) anthracene		


SUMMARY OF ANALYSIS RESULTS (cont'd)
Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-85844-1

Client Project/Site: Laurel Bay Housing Project

Revision: 1

For:

Small Business Group Inc. 10179 Highway 78 Ladson, South Carolina 29456

Attn: Tom McElwee

Authorized for release by: 9/4/2015 2:36:21 PM

Kuth Hage

Ken Hayes, Project Manager II (615)301-5035

ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

over Page	 1
able of Contents	
ample Summary	
ase Narrative	4
efinitions	 5
lient Sample Results	
C Sample Results	8
C Association	11
hronicle	 12
lethod Summary	 13
ertification Summary	14
hain of Custody	15
eceipt Checklists	17

Sample Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-85844-1

Lab Sample ID 490-85844-1 490-85844-2 Client Sample ID 1387 Dove 1100 Iris-2 Matrix Soil Soil Collected Received 08/17/15 14:30 08/22/15 10:45 08/18/15 12:00 08/22/15 10:45

3

Case Narrative

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-85844-1

Job ID: 490-85844-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-85844-1

REVISED REPORT: Revised to correct the sample date on 1100 Iris - 2 (490-85844-2) to 08/18/15 as listed on the chain of custody. This report replaces the one generated on 08/31/15 @ 1239.

Comments

No additional comments.

Receipt

The samples were received on 8/22/2015 10:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.0° C.

GC/MS VOA

Method(s) 8260B: Surrogate recovery for the following sample was outside control limits: 1387 Dove (490-85844-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with analytical batch 490-277520.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The following sample was diluted due to the nature of the sample matrix: (LCS 490-276378/2-A). As such, surrogate and MS/MSD spike recoveries were diluted out and are not reported.

Method(s) 8270D: The following sample was diluted due to the nature of the sample matrix: 1387 Dove (490-85844-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

Definitions/Glossary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-85844-1

5

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

X Surrogate is outside control limits

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

n

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: 1387 Dove Date Collected: 08/17/15 14:30

Date Received: 08/22/15 10:45

Lab Sample ID: 490-85844-1

TestAmerica Job ID: 490-85844-1

Matrix: Soil

Method: 8260B - Volatile Organic Con							June 15.1	4	
1.02		Qualifier	RL	290 to 150 to 150	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00251	0.000840	mg/Kg	÷.	08/17/15 14:30		1
)516		0.00251	0.000840	mg/Kg	\$	08/17/15 14:30		1
Contraction of the Contraction o	172		0.00627	0.00213		÷	08/17/15 14:30	08/30/15 10:35	1
	122		0.00251	0.000928		Ŷ	08/17/15 14:30	08/30/15 10:35	-1
Xylenes, Total 0.0	274		0.00627	0.00154	mg/Kg	4	08/17/15 14:30	08/30/15 10:35	1
Surrogate %Reco	very	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		70 - 130				08/17/15 14:30	08/30/15 10:35	1
4-Bromofluorobenzene (Surr)	131	X	70 - 130				08/17/15 14:30	08/30/15 10:35	1
Dibromofluoromethane (Surr)	94		70 - 130				08/17/15 14:30	08/30/15 10:35	1
Toluene-d8 (Surr)	108		70 - 130				08/17/15 14:30	08/30/15 10:35	1
Method: 8270D - Semivolatile Organia	Co	mpounds	(GC/MS)						
그 있는데 그 사람들이 되어 하는데 그 사람들이 되었다. 그 그리고 그 그리고 그 그리고 있다고 있다.		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.332	0.0495	mg/Kg	•	08/26/15 12:14		5
Acenaphthylene	ND		0.332	0.0446	mg/Kg	¢	08/26/15 12:14	08/27/15 14:13	5
Anthracene	ND		0.332	0.0446	mg/Kg	· ·	08/26/15 12:14	08/27/15 14:13	5
Benzo[a]anthracene	ND		0.332	0.0743	mg/Kg	6	08/26/15 12:14	08/27/15 14:13	5
Benzo[a]pyrene	ND		0.332	0.0594	mg/Kg	4	08/26/15 12:14	08/27/15 14:13	5
Benzo[b]fluoranthene	ND		0.332	0.0594	mg/Kg	•	08/26/15 12:14	08/27/15 14:13	5
Benzo[g,h,i]perylene	ND		0.332	0.0446	mg/Kg	0	08/26/15 12:14	08/27/15 14:13	5
Benzo[k]fluoranthene	ND		0.332	0.0693	mg/Kg	9	08/26/15 12:14	10 275 E 10 COL 1 COL 20	5
1-Methylnaphthalene 0	179	J	0.332	0.0693	mg/Kg	0	08/26/15 12:14		5
Pyrene	ND		0.332	0.0594	mg/Kg	3	08/26/15 12:14		5
Phenanthrene	ND		0.332	0.0446	mg/Kg	0	08/26/15 12:14	08/27/15 14:13	5
Chrysene	ND		0.332	0.0446	mg/Kg	0	08/26/15 12:14		5
Dibenz(a,h)anthracene	ND		0.332	0.0347	mg/Kg	27.	08/26/15 12:14		5
Fluoranthene	ND		0.332	0.0446	mg/Kg	*		08/27/15 14:13	5
Fluorene	ND		0.332	0.0594	mg/Kg	0	08/26/15 12:14		5
Indeno[1,2,3-cd]pyrene	ND		0.332	0.0495	mg/Kg	٥		08/27/15 14:13	5
Naphthalene	ND		0.332	0.0446	mg/Kg	0		08/27/15 14:13	5
2-Methylnaphthalene 0	249	J	0.332	0.0792		¢		08/27/15 14:13	5
Surrogate %Reco	very	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	62	-23 000000000000000000000000000000000000	29 - 120				08/26/15 12:14		5
Terphenyl-d14 (Surr)	65		13 - 120				08/26/15 12:14	STATES OF A STATES	5
Nitrobenzene-d5 (Surr)	56		27 - 120					08/27/15 14:13	5
General Chemistry									
	sult	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	92		0.10	0.10	23/22	47	10280025	08/25/15 09:19	1

Client Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Client Sample ID: 1100 Iris-2 Date Collected: 08/18/15 12:00

Lab Sample ID: 490-85844-2

Matrix: Soil

Method: 8260B - Volatile	Organic Compo	unas (GC	(1012)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00213	0.000714	mg/Kg	0	08/17/15 12:00	08/30/15 11:02	1
Ethylbenzene	0.00219		0.00213	0.000714	mg/Kg	-2	08/17/15 12:00	08/30/15 11:02	1
Naphthalene	0.00653		0.00533	0.00181	mg/Kg	0	08/17/15 12:00	08/30/15 11:02	1
Toluene	0.00712		0.00213	0.000789	mg/Kg	Ø.	08/17/15 12:00	08/30/15 11:02	1
Xylenes, Total	0.0106		0.00533	0.00131	mg/Kg	0	08/17/15 12:00	08/30/15 11:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81		70 - 130				08/17/15 12:00	08/30/15 11:02	1
4-Bromofluorobenzene (Surr)	120		70 - 130				08/17/15 12:00	08/30/15 11:02	1
Dibromofluoromethane (Surr)	94		70 - 130				08/17/15 12:00	08/30/15 11:02	1
Toluene-d8 (Surr)	104		70 - 130				08/17/15 12:00	08/30/15 11:02	1
Method: 8270D - Semivol	atile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0658	0.00982	mg/Kg	14	08/26/15 12:14	08/27/15 14:37	1
Acenaphthylene	ND		0.0658	0.00884	mg/Kg	4	08/26/15 12:14	08/27/15 14:37	1
Anthracene	ND		0.0658	0.00884	mg/Kg	\$	08/26/15 12:14	08/27/15 14:37	1
Benzo[a]anthracene	ND		0.0658	0.0147	mg/Kg	*	08/26/15 12:14	08/27/15 14:37	1
Benzo[a]pyrene	ND		0.0658	0.0118	mg/Kg	25	08/26/15 12:14	08/27/15 14:37	1
Benzo[b]fluoranthene	ND		0.0658	0.0118	mg/Kg	4	08/26/15 12:14	08/27/15 14:37	1
Benzo[g,h,i]perylene	ND		0.0658	0.00884	mg/Kg	4	08/26/15 12:14	08/27/15 14:37	1
Benzo[k]fluoranthene	ND		0.0658	0.0138	mg/Kg	\$	08/26/15 12:14	08/27/15 14:37	.1
1-Methylnaphthalene	ND		0.0658	0.0138	mg/Kg	*	08/26/15 12:14	08/27/15 14:37	1
Pyrene	ND		0.0658	0.0118	mg/Kg	4	08/26/15 12:14	08/27/15 14:37	1
Phenanthrene	ND		0.0658	0.00884	mg/Kg	- 9	08/26/15 12:14	08/27/15 14:37	1
Chrysene	ND		0.0658	0.00884	mg/Kg	4	08/26/15 12:14	08/27/15 14:37	1
Dibenz(a,h)anthracene	ND		0.0658	0.00688	mg/Kg	0	08/26/15 12:14	08/27/15 14:37	1
Fluoranthene	ND		0.0658	0.00884	mg/Kg	0	08/26/15 12:14	08/27/15 14:37	1
Fluorene	ND		0.0658	0.0118	mg/Kg	-\$-	08/26/15 12:14	08/27/15 14:37	1
Indeno[1,2,3-cd]pyrene	ND		0.0658	0.00982	mg/Kg	4	08/26/15 12:14	08/27/15 14:37	1
Naphthalene	ND		0.0658	0.00884	mg/Kg	· ·	08/26/15 12:14	08/27/15 14:37	1
2-Methylnaphthalene	ND		0.0658	0.0157	mg/Kg	0	08/26/15 12:14	08/27/15 14:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	40		29 - 120				08/26/15 12:14	08/27/15 14:37	1
Terphenyl-d14 (Surr)	46		13 - 120				08/26/15 12:14	08/27/15 14:37	1
Nitrobenzene-d5 (Surr)	37		27 - 120				08/26/15 12:14	08/27/15 14:37	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	83		0.10	0.10	%			08/25/15 09:19	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-277520/7

Matrix: Solid

Analysis Batch: 277520

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			08/30/15 06:28	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			08/30/15 06:28	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			08/30/15 06:28	1
Toluene	ND		0.00200	0.000740	mg/Kg			08/30/15 06:28	1
Xylenes, Total	ND		0.00500	0.00123	mg/Kg			08/30/15 06:28	1
	MB	MB							
Zeronium de la companya del companya del companya de la companya d	A STATE OF THE PARTY OF THE PAR	Section 1	0.2 %					and the second second second	and the last

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 70-130 08/30/15 06:28 86 70 - 130 4-Bromofluorobenzene (Surr) 98 08/30/15 06:28 1 70 - 130 Dibromofluoromethane (Surr) 101 08/30/15 06:28 1 Toluene-d8 (Surr) 99 70 - 130 08/30/15 06:28

Lab Sample ID: LCS 490-277520/3

Matrix: Solid

Analysis Batch: 277520

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.04993		mg/Kg		100	75 - 127
Ethylbenzene	0.0500	0.04274		mg/Kg		85	80 - 134
Naphthalene	0.0500	0.05080		mg/Kg		102	69 - 150
Toluene	0.0500	0.04126		mg/Kg		83	80 - 132
Xylenes, Total	0.100	0.08594		mg/Kg		86	80 - 137

LCS LCS %Recovery Qualifier Limits Surrogate 70 - 130 1,2-Dichloroethane-d4 (Surr) 85 4-Bromofluorobenzene (Surr) 102 70-130 Dibromofluoromethane (Surr) 97 70 - 130 70 - 130 Toluene-d8 (Surr) 86

Lab Sample ID: LCSD 490-277520/4

Matrix: Solid

Analysis Batch: 277520

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD Spike %Rec. RPD Added Analyte Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.0500 0.04960 mg/Kg 99 75 - 127 50 1 Ethylbenzene 0.0500 0.04301 mg/Kg 86 80 - 134 50 1 69 - 150 Naphthalene 0.0500 0.05395 mg/Kg 108 6 50 0.0500 0.04290 Toluene mg/Kg 86 80 - 132 4 50 Xylenes, Total 0.100 0.08584 mg/Kg 86 80 - 137 0 50

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130
Toluene-d8 (Surr)	86		70 - 130

TestAmerica Nashville

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-276378/1-A

Matrix: Solid

Analysis Batch: 276714

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 276378

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Anthracene	ND		0.0670	0.00900	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Pyrene	ND		0.0670	0.0120	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Chrysene	ND		0.0670	0.00900	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Fluorene	ND		0.0670	0.0120	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		08/26/15 12:14	08/27/15 13:25	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		08/26/15 12:14	08/27/15 13:25	1

MB MB %Recovery Qualifier Dil Fac Limits Prepared Analyzed Surrogate 29 - 120 08/26/15 12:14 08/27/15 13:25 2-Fluorobiphenyl (Surr) 72 13-120 08/26/15 12:14 08/27/15 13:25 77 Terphenyl-d14 (Surr) 08/26/15 12:14 08/27/15 13:25 Nitrobenzene-d5 (Surr) 70 27 - 120

Lab Sample ID: LCS 490-276378/2-A

Matrix: Solid

Analysis Batch: 276714

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 276378

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
1.67	1.086		mg/Kg		65	38 - 120
1.67	1.070		mg/Kg		64	46 - 124
1.67	1.060		mg/Kg		64	45 - 120
1.67	1.044		mg/Kg		63	45 - 120
1.67	0.9941		mg/Kg		60	42 - 120
1.67	1.107		mg/Kg		66	38 - 120
1.67	1.065		mg/Kg		64	42 - 120
1.67	1.082		mg/Kg		65	32 - 120
1.67	1.009		mg/Kg		61	43 - 120
1.67	1.017		mg/Kg		61	45 - 120
1.67	1.043		mg/Kg		63	43 - 120
1.67	1.104		mg/Kg		66	32 - 128
1.67	1.071		mg/Kg		64	46 - 120
1.67	1.051		mg/Kg		63	42 - 120
1.67	1.088		mg/Kg		65	41 - 121
1.67	1.034		mg/Kg		62	32 - 120
1.67	1.007		mg/Kg		60	28 - 120
	Added 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67	Added Result 1.67 1.086 1.67 1.070 1.67 1.060 1.67 1.044 1.67 0.9941 1.67 1.065 1.67 1.082 1.67 1.092 1.67 1.017 1.67 1.043 1.67 1.043 1.67 1.071 1.67 1.051 1.67 1.088 1.67 1.088 1.67 1.088	Added Result Qualifier 1.67	Added Result Qualifier Unit 1.67 1.086 mg/Kg 1.67 1.070 mg/Kg 1.67 1.060 mg/Kg 1.67 1.044 mg/Kg 1.67 0.9941 mg/Kg 1.67 1.107 mg/Kg 1.67 1.065 mg/Kg 1.67 1.082 mg/Kg 1.67 1.009 mg/Kg 1.67 1.043 mg/Kg 1.67 1.043 mg/Kg 1.67 1.071 mg/Kg 1.67 1.051 mg/Kg 1.67 1.088 mg/Kg 1.67 1.088 mg/Kg 1.67 1.034 mg/Kg	Added Result Qualifier Unit D 1.67 1.086 mg/Kg 1.67 1.070 mg/Kg 1.67 1.060 mg/Kg 1.67 1.044 mg/Kg 1.67 0.9941 mg/Kg 1.67 1.107 mg/Kg 1.67 1.065 mg/Kg 1.67 1.082 mg/Kg 1.67 1.017 mg/Kg 1.67 1.043 mg/Kg 1.67 1.043 mg/Kg 1.67 1.071 mg/Kg 1.67 1.051 mg/Kg 1.67 1.088 mg/Kg 1.67 1.088 mg/Kg	Added Result Qualifier Unit D %Rec 1.67 1.086 mg/Kg 65 1.67 1.070 mg/Kg 64 1.67 1.060 mg/Kg 64 1.67 1.044 mg/Kg 63 1.67 0.9941 mg/Kg 60 1.67 1.107 mg/Kg 64 1.67 1.082 mg/Kg 64 1.67 1.082 mg/Kg 65 1.67 1.017 mg/Kg 61 1.67 1.043 mg/Kg 63 1.67 1.043 mg/Kg 66 1.67 1.010 mg/Kg 66 1.67 1.051 mg/Kg 64 1.67 1.051 mg/Kg 63 1.67 1.088 mg/Kg 65 1.67 1.088 mg/Kg 65

TestAmerica Nashville

QC Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-85844-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-276378/2-A

Matrix: Solid

Analysis Batch: 276714

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 276378

LCS LCS

Method: Moisture - Percent Moisture

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	62		29 - 120
Terphenyl-d14 (Surr)	63		13 - 120
Nitrobenzene-d5 (Surr)	67		27 - 120

Lab Sample ID: 490-85856-J-2 DU

Client Sample ID: Duplicate

Prep Type: Total/NA

Analysis Batch: 275908

Matrix: Solid

DU DU Sample Sample RPD Result Qualifier Result Qualifier Unit RPD Limit Analyte Percent Solids 84 84 % 0.6 20

8260B

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

GC/MS VOA

Prep Batch: 276308

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-85844-1	1387 Dove	Total/NA	Soil	5035	
490-85844-2	1100 Iris-2	Total/NA	Soil	5035	

Analysis Batch: 277520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-85844-1	1387 Dove	Total/NA	Soil	8260B	276308
490-85844-2	1100 Iris-2	Total/NA	Soil	8260B	276308
LCS 490-277520/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-277520/4	Lab Control Sample Dup	Total/NA	Solid	8260B	

Solid Method Blank Total/NA MB 490-277520/7

GC/MS Semi VOA

Prep Batch: 276378

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-85844-1	1387 Dove	Total/NA	Soil	3550C	
490-85844-2	1100 Iris-2	Total/NA	Soil	3550C	
LCS 490-276378/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-276378/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 276714

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-85844-1	1387 Dove	Total/NA	Soil	8270D	276378
490-85844-2	1100 Iris-2	Total/NA	Soil	8270D	276378
LCS 490-276378/2-A	Lab Control Sample	Total/NA	Solid	8270D	276378
MB 490-276378/1-A	Method Blank	Total/NA	Solid	8270D	276378

General Chemistry

Analysis Batch: 275908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-85844-1	1387 Dove	Total/NA	Soil	Moisture	
490-85844-2	1100 Iris-2	Total/NA	Soil	Moisture	
490-85856-J-2 DU	Duplicate	Total/NA	Solid	Moisture	

Lab Chronicle

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-85844-1

Client Sample ID: 1387 Dove

Date Collected: 08/17/15 14:30 Date Received: 08/22/15 10:45 Lab Sample ID: 490-85844-1

Matrix: Soil

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.316 g	5.00 mL	276308	08/17/15 14:30	MAH	TAL NSH
Total/NA	Analysis	8260B		1	4.316 g	5.00 mL	277520	08/30/15 10:35	RP	TAL NSH
Total/NA	Prep	3550C			32.78 g	1 mL	276378	08/26/15 12:14	LDC	TAL NSH
Total/NA	Analysis	8270D		5	32.78 g	1 mL	276714	08/27/15 14:13	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			275908	08/25/15 09:19	MNM	TAL NSH

Lab Sample ID: 490-85844-2

Matrix: Soil

Client Sample ID: 1100 Iris-2 Date Collected: 08/18/15 12:00 Date Received: 08/22/15 10:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.632 g	5.00 mL	276308	08/17/15 12:00	MAH	TAL NSH
Total/NA	Analysis	8260B		1	5.632 g	5.00 mL	277520	08/30/15 11:02	RP	TAL NSH
Total/NA	Prep	3550C			36.68 g	1 mL	276378	08/26/15 12:14	LDC	TAL NSH
Total/NA	Analysis	8270D		1	36.68 g	1 mL	276714	08/27/15 14:37	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			275908	08/25/15 09:19	MNM	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Small Business Group Inc.

Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-85844-1

Method Method Description

8260B Volatile Organic Compounds (GC/MS)
8270D Semivolatile Organic Compounds (GC/MS)

Moisture Percent Moisture

Protocol SW846 Laboratory

SW846

EPA

TAL NSH TAL NSH TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

10

Certification Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-85844-1

Laboratory: TestAmerica Nashville

Unless otherwise noted all analytes for this laboratory were colleged under each certification below

Authority	Program	EPA Region	Certification ID	Expiration Date
North Carolina (WW/SW)	State Program	4	387	12-31-15

The following analytes are included in this report, but certification is not offered by the governing authority:

Analysis Method Prep Method Matrix Analyte
Moisture Soil Percent Solids

South Carolina State Program 4 84009 (001) 02-28-16

The following analytes are included in this report, but certification is not offered by the governing authority:

Analysis Method Prep Method Matrix Analyte
8270D 3550C Soil 1-Methylnaphthalene

Moisture Soil Percent Solids

COOLER RECEIPT FORM

Cooler Received/Opened On 8/22/2015 @ 1045	
1. Tracking # 9073 (last 4 digits, FedEx)	
Courier: Fed-ex IR Gun ID 17960357	
2. Temperature of rep. sample or temp blank when opened: 5.0 Degrees Celsius	~
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler? If yes, how many and where: Font / Back	YES., NONA
	VES. NONA
5. Were the seals intact, signed, and dated correctly?	
6. Were custody papers inside cooler?	YES NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES and Intact	YESNOA
Were these signed and dated correctly?	YESNOATA
8. Packing mat'l used? Subblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: (ce-pack lce (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	ESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA
12. Did all container labels and tags agree with custody papers?	YES NONA
13a. Were VOA vials received?	ESNONA
b. Was there any observable headspace present in any VOA vial?	YESNO.NA
14. Was there a Trip Blank in this cooler? YES. NA If multiple coolers, sequence	ce #
certify that I unloaded the cooler and answered guestions 7-14 (intial)	MDM
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	ESNONA
16. Was residual chlorine present?	YESNO.
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	MADINO
17. Were custody papers properly filled out (ink, signed, etc)?	YES NO NA
18. Did you sign the custody papers in the appropriate place?	XESNONA
19. Were correct containers used for the analysis requested?	XES.NONA
20. Was sufficient amount of sample sent in each container?	XES)NONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	442 447
certify that I attached a label with the unique LIMS number to each container (intial)	mo m
21. Were there Non-Conformance Issues at login? YES. 40 Was a NCM generated? YES.	NO.).#

Loc: 490 85844

Testamerica Nashville Division 2960 Foster Creighton Nashville, TN 37204

Phone: 615-726-0177 Toll Free: 800-765-0980 To assist us in using the proper analytical

THE LEADER IN ENVIRONMENTA	AL TESTING	Nashville			,,,			10		Fax:												tory pu			ig cone	aucteu	101						
Client Name/Account #:	: SBG - EEG#	2449																						Compl	lance N	/lonitori	ing?	Yes		No			
Address	: 10179 Highwa	ay 78																						Enfor	cemer	t Actio	n?	Yes		No			
City/State/Zip:	: Ladson, SC 2	9456																S	ite St	tate:	SC												
Project Manager:	Tom McElwe	e email: mce	wee@e	egino	net			0	-			4				-	-		P	0#:		14	OC	P									
Telephone Number:	843.412.2097					F	ax No	18	54	3	1 0	11	2	-	26	72	-/	TA	Quot	te #:													
Sampler Name: (Print)	PA	Att	S	19	Pie)												P	rojec	t ID:	Laure	Bay F	lousing	p Proje	ect								
Sampler Signature:		13/1	11	1								9	9					F	roje	ct#:													
								Z	tese	ervativ	ve		2		Mat	rix		I					Α	nalyze	For:					L			
Sample ID / Description	Date Sampled			X Grab	Composite	Field Filtered	eol eol	HNO ₃ (Red Label)		H ₂ SO ₄ Plastic (Yellov/ Label)	1	None (Black Label)	7117	Wastewater	Drinking Water	-	X	Other (specify):	W BTEX + Napth - 8260	X PAH - 8270D									-1	RUSH TAT (Pre-Schedule	Standard TAT	Fax Results	Send QC with report
1100 Iris - 2	8/18/15	1200	5	X				E	2			21					X	X	5	X									2				000
Special Instructions:					•				-	-											Labor	ratory								_	-		
Relinquished by	8/2	ate / _	1-	me	0.00	ived b	y:	1		ipme	nt:	_		T	Da	_	FED		ime						n Rece idspace	ipt: 5. e?	°c			Y		N	
Relinquished by:	Di	ate	-	DOC me	Rece	ived b	y Tes		ica:				-	1	Da			T	ime														

13

Login Sample Receipt Checklist

Client: Small Business Group Inc.

Job Number: 490-85844-1

List Source: TestAmerica Nashville

Login Number: 85844 List Number: 1 Creator: McBride, Mike

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 1100Iris-2, 1100 Iris Lane, Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANK	SIZE (GAL)
Steel	280

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

1.0. LeQuee / 9/24/15 (Name) (Date)

Appendix C Laboratory Analytical Report - Groundwater

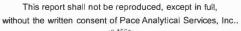
Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project:

LAUREL BAY SAMPLING 7/28/08


Pace Project No.: 9224472

Sample: 1002 BOBWHITE A	Lab ID: 9224472018	3 Collected: 07/28/0	8 14:00	Received: 07	7/30/08 17:00	Matrix: Water	
Parameters	Results Unit	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
270 MSSV PAH by SIM SPE	Analytical Method: EPA	A 8270 by SIM Preparation	on Meth	od: EPA 3535			
Nitrobenzene-d5 (S)	52 %	50-150	1	08/03/08 00:00	08/12/08 15:59	9 4165-60-0	
2-Fluorobiphenyl (S)	50 %	50-150	1	08/03/08 00:00	08/12/08 15:59	9 321-60-8	
Terphenyl-d14 (S)	53 %	50-150	1	08/03/08 00:00	08/12/08 15:59	9 1718-51-0	
8260 MSV Low Level	Analytical Method: EPA	A 8260					
Benzene	ND ug/L	1.0	1		08/02/08 00:29	9 71-43-2	
Ethylbenzene	ND ug/L	1.0	1		08/02/08 00:29	9 100-41-4	
Naphthalene	ND ug/L	1.0	1		08/02/08 00:29	9 91-20-3	
Toluene	ND ug/L	1.0	1		08/02/08 00:29		
m&p-Xylene	ND ug/L	2.0	1		08/02/08 00:29		
o-Xylene	ND ug/L	1.0	1		08/02/08 00:29		
4-Bromofluorobenzene (S)	96 %	87-109	1		08/02/08 00:29		
Dibromofluoromethane (S)	97 %	85-115	1		08/02/08 00:29		
1,2-Dichloroethane-d4 (S)	99 %	79-120	1		08/02/08 00:29		
Foluene-d8 (S)	98 %	79-120	1		08/02/08 00:29		
Sample: 1100 IRIS A	Lab ID: 9224472019	9 Collected: 07/28/0	8 15·00	Received: 07	7/30/08 17:00	Matrix: Water	
Parameters				Prepared	Analyzed	CAS No.	Qua
- Carameters	Results Unit	ts Report Limit	DF	- Toparou	7 mary 20a		
3270 MSSV PAH by SIM SPE	Analytical Method: EPA	A 8270 by SIM Preparation	on Meth	nod: EPA 3535			
Acenaphthene	ND ug/L	2.0	1		08/12/08 16:23		
Acenaphthylene	ND ug/L	1.5	1	08/03/08 00:00			
Anthracene	0.72 ug/L	0.050	1	08/03/08 00:00	08/12/08 16:23	3 120-12-7	
Benzo(a)anthracene	0.49 ug/L	0.10	1		08/12/08 16:23		
Benzo(a)pyrene	0.74 ug/L	0.20	1	08/03/08 00:00	08/12/08 16:23	3 50-32-8	
Benzo(b)fluoranthene	0.78 ug/L	0.30	1	08/03/08 00:00	08/12/08 16:23	3 205-99-2	
Benzo(g,h,i)perylene	0.56 ug/L	0.20	1	08/03/08 00:00	08/12/08 16:23	3 191-24-2	
Benzo(k)fluoranthene	0.77 ug/L	0.20	1	08/03/08 00:00	08/12/08 16:23	3 207-08-9	
Chrysene	0.49 ug/L	0.10	1	08/03/08 00:00	08/12/08 16:23	3 218-01-9	
Dibenz(a,h)anthracene	0.69 ug/L	0.20	1	08/03/08 00:00	08/12/08 16:23	3 53-70-3	
luoranthene	0.53 ug/L	0.30	1	08/03/08 00:00	08/12/08 16:23	3 206-44-0	
luorene	0.72 ug/L	0.31	1	08/03/08 00:00			
ndeno(1,2,3-cd)pyrene	0.66 ug/L	0.20	1	08/03/08 00:00			
-Methylnaphthalene	ND ug/L	2.0	1	08/03/08 00:00			
?-Methylnaphthalene	ND ug/L		1		08/12/08 16:23		
laphthalene	ND ug/L	2.0	1		08/12/08 16:23		
Phenanthrene	0.92 ug/L	1.5 0.20			08/12/08 16:23		
			1		08/12/08 16:23		
Pyrene	0.37 ug/L	0.10	1				
Nitrobenzene-d5 (S)	50 %	50-150	1	08/03/08 00:00			
?-Fluorobiphenyl (S)	63 %	50-150	1	08/03/08 00:00			
erphenyl-d14 (S)	66 %	50-150	1	08/03/08 00:00	08/12/08 16:23	3 1/18-51-0	
260 MSV Low Level	Analytical Method: EPA	A 8260					
Benzene	ND ug/L	1.0	1		08/02/08 00:53	3 71-43-2	
	_						

Date: 08/13/2008 05:36 PM

REPORT OF LABORATORY ANALYSIS

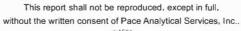
Page 20 of 38

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project:

LAUREL BAY SAMPLING 7/28/08


Pace Project No.: 9224472

Sample: 1100 IRIS A	Lab ID: 922	4472019	Collected: 07/28/0	08 15:00	Received: 07	7/30/08 17:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical Meth	nod: EPA 82	60					
Ethylbenzene	ND ug	/L	1.0	1		08/02/08 00:53	100-41-4	
Naphthalene	ND ug	/L	1.0	1		08/02/08 00:53	91-20-3	
Toluene	ND ug	/L	1.0	1		08/02/08 00:53	108-88-3	
m&p-Xylene	ND ug	/L	2.0	1		08/02/08 00:53	1330-20-7	
o-Xylene	ND ug		1.0	1		08/02/08 00:53	95-47-6	
4-Bromofluorobenzene (S)	96 %		87-109	1		08/02/08 00:53	460-00-4	
Dibromofluoromethane (S)	98 %		85-115	1		08/02/08 00:53	1868-53-7	
1,2-Dichloroethane-d4 (S)	100 %		79-120	1		08/02/08 00:53	17060-07-0	
Toluene-d8 (S)	99 %		70-120	1		08/02/08 00:53	2037-26-5	
Sample: 1106 IRIS A	Lab ID: 922	4472020	Collected: 07/28/0	08 15:20	Received: 07	7/30/08 17:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM SPE	Analytical Metl	nod: EPA 82	70 by SIM Preparat	ion Meth	nod: EPA 3535			
Acenaphthene	ND ug	/L	2.0	1	08/03/08 00:00	08/12/08 17:34	83-32-9	
Acenaphthylene	ND ug		1.5	1		08/12/08 17:34		
Anthracene	ND ug		0.050	1		08/12/08 17:34		
Benzo(a)anthracene	ND ug		0.10	1		08/12/08 17:34		
Benzo(a)pyrene	ND ug		0.20	1		08/12/08 17:34		
Benzo(b)fluoranthene	ND ug		0.30	1		08/12/08 17:34		
Benzo(g,h,i)perylene	ND ug		0.20	1		08/12/08 17:34		
Benzo(k)fluoranthene	ND ug		0.20	1		08/12/08 17:34		
Chrysene	ND ug		0.10	1		08/12/08 17:34		
Dibenz(a,h)anthracene	ND ug		0.20	1		08/12/08 17:34		
Fluoranthene	ND ug		0.30	1		08/12/08 17:34		
Fluorene	ND ug		0.31	1		08/12/08 17:34		
ndeno(1,2,3-cd)pyrene	ND ug		0.20	1		08/12/08 17:34		
1-Methylnaphthalene	ND ug		2.0	1		08/12/08 17:34		
2-Methylnaphthalene	ND ug		2.0	1		08/12/08 17:34		
Naphthalene	ND ug		1.5	1		08/12/08 17:34		
Phenanthrene	ND ug		0.20	1		08/12/08 17:34		
Pyrene	ND ug		0.20	1		08/12/08 17:34		
Nitrobenzene-d5 (S)	50 %	, _	50-150	1		08/12/08 17:34		
2-Fluorobiphenyl (S)	60 %		50-150	1		08/12/08 17:34		
Terphenyl-d14 (S)	64 %		50-150	1		08/12/08 17:34		
8260 MSV Low Level	Analytical Met	nod: EPA 82						
Benzene	ND ug	/L	1.0	1		08/02/08 01:16	71-43-2	
	ND ug		1.0	1		08/02/08 01:16		
Ethylbenzene	-		1.0	1		08/02/08 01:16		
	ND un							
Naphthalene	ND ug ND ug		1.0	1		08/02/08 01:16	108-88-3	
Ethylbenzene Naphthalene Toluene m&p-Xylene	ND ug	/L	1.0	1		08/02/08 01:16 08/02/08 01:16		
Naphthalene		/L /L	1.0 2.0 1.0	1 1 1		08/02/08 01:16 08/02/08 01:16 08/02/08 01:16	1330-20-7	

Date: 08/13/2008 05:36 PM

REPORT OF LABORATORY ANALYSIS

Page 21 of 38

Appendix D Regulatory Correspondence

BOARD:
Paul C. Aughtry, III
Chairman
Edwin H. Cooper, III
Vice Chairman
Steven G. Kisner

Secretary

Henry C. Scott

M. David Mitchell, MD

Glenn A. McCall

Coleman F. Buckhouse, MD

C. Earl Hunter, Commissioner

Promoting and protecting the health of the public and the environment

13 August 2008

Beaufort Military Complex Family Housing ATTN: Kyle Broadfoot 1510 Laurel Bay Blvd. Beaufort, SC 29906

Re:

MCAS - Laurel Bay Housing - 1100 Iris

Site ID # 03978

UST Closure Reports received 31 January 2008

Beaufort County

Dear Mr. Broadfoot:

The purpose of this letter is to verify a release of fuel oil at the referenced residence. According to information received by the Department, the source of the release is from past onsite use of fuel oil USTs. To date, initial activities by the facility have included tank removal and soil sampling. Based on the information contained in the closure report, a potential violation of the South Carolina Pollution Control Act has occurred in that there has been an unauthorized release of petroleum to the environment.

Additional assessment activities are required for this site. Specifically the Department requests that a groundwater sample be collected from this site. Please note, the Department approved a groundwater sampling proposal for Laurel Bay submitted by MCAS under separate cover dated 16 June 2008.

Should you have any questions, please contact me at 803-898-3553 (office phone), 803-898-2893 (fax) or bishopma@dhec.sc.gov.

Sincerely,

Michael Bishop, Hydrogeologist Groundwater Quality Section

Bureau of Water

cc:

Region 8 District EQC (via pdf)

MCAS, Commanding Officer, Attention: S-4 NREAO (William Drawdy) (via pdf)

Technical File

C. Earl Hunter, Commissioner

Promoting and protecting the health of the public and the environment.

19 December 2008

Commanding Officer ATTN: S-4 NREAO (Craig Ehde) MCAS PO Box 55001 Beaufort, SC 29904-5001

Re:

MCAS - Laurel Bay Housing - 1100 Iris

Site ID # 03978

Groundwater Sampling Results received 6 November 2008

Beaufort County

Dear Mr. Ehde:

Per the Department's request, a groundwater sample was collected from the referenced site. The groundwater results were reported as non-detect and/or below EPA PRG's. Based on the information and analytical data submitted, the Department recognizes that MCAS has adequately addressed the known environmental contamination identified on the property to date in accordance with the approved scope of work. Consequently, no further investigation is required at this time. Please note, this statement pertains only to the portion of the site addressed in the referenced report and does not apply to other areas of the site and/or any other potential regulatory violations. Further, the Department retains the right to request further investigation if deemed necessary.

Should you have any questions, please contact me at 803-896-4179 (office phone), 803-896-6245 (fax) or cookejt@dhec.sc.gov.

Sincerely,
AST Petroleum Restoration
& Site Environmental Investigations Section
Land Revitalization Division
Bureau of Land and Waste Management
SC Dept. of Health & Environmental Control

Jan T. Cooke, Hydrogeologist

B. Thomas Knight, Manager

cc: Region 8 District EQC

Tri-Command Communities; Attn: Mr. Robert Bible; 600 Laurel Bay Road Beaufort, SC

29906

Technical File

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports for:

See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg

Department of Defense Corrective Action Section

Bureau of Land and Waste Management

South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email)

> Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Attachment to: Krieg to Drawdy

Subject: NFA
Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks)

111 Birch	111 D' 1	262.4
131 Banyan 366 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 425 Elderberry 208 Balsam 452 Elderberry 210 Balsam 452 Elderberry 211 Balsam 466 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 224 Elderberry 252 Beech Tank 2 221 Beech Tank 2 513 Laurel Bay 222 Elderberry 271 Beech Tank 2 23 Cypress 487 Laurel Bay 24 Birch Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 310 Ash 590 Aster 311 Ash 610 Dahlia 312 Ash 610 Dahlia	111 Birch	363 Aspen
134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 401 Elderberry 153 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 212 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 636 Dahlia 317 Ash 637 Dahlia Tank 1 351 Ash Tank 1 637 Dahlia Tank 2		1
145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 251 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 2 523 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 2 642 Dahlia Tank 1		*
150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 460 Elderberry 211 Balsam 466 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 251 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		1
153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1		1
154 Laurel Bay		1
155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1		j
200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 208 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1		402 Elderberry
202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	155 Laurel Bay	404 Elderberry
203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	200 Balsam	410 Elderberry
208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 2 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	202 Balsam	420 Elderberry
210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 487 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	203 Balsam	424 Elderberry
211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 487 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	208 Balsam	435 Elderberry Tank 3
220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 2 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	210 Balsam	452 Elderberry
222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	211 Balsam	460 Elderberry
222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	220 Cypress	465 Dogwood
223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	222 Cypress	
271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1		487Laurel Bay
271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	252 Beech Tank 2	513 Laurel Bay
284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	271 Beech Tank 1	519 Laurel Bay
284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	271 Beech Tank 2	524 Laurel Bay
284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	284 Birch Tank 1	535 Laurel Bay
311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	284 Birch Tank 2	
312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	308 Ash	590 Aster
317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	311 Ash	591 Aster
318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	312 Ash	610 Dahlia
337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	317 Ash	612 Dahlia
351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	318 Ash	628 Dahlia
351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	337 Ash	636 Dahlia
351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1		637 Dahlia Tank 1
355 Ash Tank 1 641 Dahlia 355 Ash Tank 2 642 Dahlia Tank 1	351 Ash Tank 2	637 Dahlia Tank 2
355 Ash Tank 2 642 Dahlia Tank 1		
	360 Aspen	

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

655 Camellia	920 Albacore
662 Camellia	922 Barracuda Tank 1
683 Camellia	922 Barracuda Tank 2
684 Camellia	924 Albacore
689 Abelia	925 Albacore
694 Abelia	926 Albacore
695 Abelia	930 Albacore
741 Blue Bell	931 Albacore
742 Blue Bell	933 Albacore
755 Althea	936 Albacore
757 Althea	938 Albacore
776 Laurel Bay	939 Albacore
777 Azalea	940 Albacore
779 Laurel Bay	1010 Foxglove
781 Laurel Bay	1066 Gardenia
802 Azalea	1068 Gardenia
816 Azalea	1071 Heather Tank 2
822 Azalea	1100 Iris Tank 2
823 Azalea	1128 Iris
825 Azalea	1178 Bobwhite
828 Azalea	1204 Cardinal
837 Azalea	1208 Cardinal
851 Dolphin	1209 Cardinal
856 Dolphin	1210 Cardinal
857 Dolphin	1215 Cardinal
861 Dolphin	1216 Cardinal
864 Dolphin	1217 Cardinal Tank 1
868 Dolphin	1217 Cardinal Tank 2
872 Dolphin	1233 Dove
879 Cobia	1244 Dove
886 Cobia	1250 Dove
888 Cobia	1252 Dove
889 Cobia	1254 Dove
901 Barracuda	1256 Dove
902 Barracuda	1258 Dove
903 Barracuda	1263 Dove
904 Barracuda	1269 Dove
909 Barracuda	1276 Dove
910 Barracuda	1283 Dove
914 Barracuda	1285 Dove
915 Barracuda	1288 Eagle

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

1296 Eagle	1330 Albatross
1307 Eagle	1331 Albatross
1321 Albatross	1333 Albatross
1322 Albatross	1334 Albatross
1327 Albatross	1335 Albatross
1328 Albatross	

August 3, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports

Dated July 2015, November 2015

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (the Department) received the Underground Storage Tanks (USTs) Assessment Reports for the addresses listed in the attachment. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

Cc:

XIRIS

Laurel Petrus, Environmental Engineer Associate Bureau of Land and Waste Management

Russell Berry, EQC Region 8 (via email)

Bryan Beck, NAVFAC MIDATLANTIC (via email)

Craig Ehde (via email)

Attachment to: Petrus to Drawdy

Subject: No Further Action Dated August 3, 2016

Laurel Bay Underground Assessment Reports for (28 addresses/29 tanks)

309 Ash	1001 Bobwhite
477 Dogwood Tank 2	1020 Foxglove
563 Dahlia	1063 Gardenia
659 Camellia	1065 Gardenia Tank 2
1213 Cardinal	1100 Iris Tank 3*
114 Banyan	1139 Iris
158 Cypress	1141 Iris Tank 2
459 Elderberry	1174 Bobwhite
611 Dahlia	1184 Bobwhite Tank 1
656 Camellia	1184 Bobwhite Tank 2
671 Camellia	1220 Cardinal
678 Camellia	1253 Dove
724 Bluebell	1332 Albatross
732 Bluebell	1387 Dove
934 Albacore	